首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Described herein is the Rh(I)-catalyzed ortho-alkylation of aromatic ketimines or ketones with olefins. This method showed high reactivity and selectivity to monoalkylation for a variety of olefins including 1-alkenes with an allylic proton, alpha,omega-dienes, and internal olefins. For a mechanistic study, H/D exchange experiments were carried out, which demonstrated that the ortho C-H bond could be easily cleaved even at the low temperature of 45 degrees C. The key step of this reaction is the formation of a stable five-membered metallacycle by a chelation-assisted ortho C-H bond activation. Furthermore, the direct ortho-alkylation of aromatic ketones with the Rh(I) complex was successfully achieved by adding 50 mol % of benzylamine as a chelation-assistant tool.  相似文献   

2.
The reaction of 1-arylpyrazoles with CO and ethylene in the presence of Ru(3)(CO)(12) resulted in regioselective carbonylation at the ortho C-H bonds. While it is found that the pyrazole ring also functions as the directing group for C-H bond cleavage, the efficiency of the reaction depends on the position of the pyrazole ring.  相似文献   

3.
A simple copper-based catalytic system has been developed for the carbon-hydrogen amidation reaction. The copper-homoscorpionate complex Tp(Br3)Cu(NCMe) catalyzes the transfer of the nitrene unit NTs (Ts = p-toluenesulfonyl) and its subsequent insertion into the sp(3) C-H bonds of alkyl aromatic and cyclic ethers or the sp(2) C-H bonds of benzene using PhI=NTs as the nitrene source, affording the corresponding trisubstitued NR(1)HTs amines in moderate to high yields. The use of the environmentally friendly chloramine-T has also proven effective, with the advantage that sodium chloride is formed as the only byproduct. A tandem, one-pot consecutive nitrene-carbene insertion system has been developed to yield amino acid derivatives.  相似文献   

4.
The direct carbonylation of C-H bonds in the benzene ring of N-phenylpyrazoles via catalysis by ruthenium or rhodium complexes is described. The reaction of N-phenylpyrazoles with carbon monoxide and ethylene in the presence of Ru(3)(CO)(12) or Rh(4)(CO)(12) resulted in the site-selective carbonylation of the ortho C-H bonds in the benzene ring to give the corresponding ethyl ketones. A variety of functional groups on the benzene ring can be tolerated. N-Phenylpyrazoles have higher reactivities than would be expected, based on the pK(a) values of the conjugate acid of pyrazole. The choice of solvent for this reaction is significant, and N, N-dimethylacetamide (DMA) gives the best result.  相似文献   

5.
Lu W  Jia C  Kitamura T  Fujiwara Y 《Organic letters》2000,2(19):2927-2930
Simple heteroarenes such as pyrroles and indoles undergo addition reactions to C-C triple bonds in the presence of a catalytic amount of Pd(OAc)(2) under very mild conditions, affording cis-heteroarylalkenes in most cases. The cleavage of aromatic C-H bonds is the possible rate-determining step in CH(2)Cl(2), and the addition of heteroaromatic C-H bonds to C-C triple bonds is in a trans-fashion.  相似文献   

6.
The ruthenium-catalyzed reaction of aryl ethers having a carbonyl group at the ortho position to the ether group with organoboronates (R-B(OCH2CMe2CH2O), R = aryl, alkenyl, and alkyl) resulted in site-selective C-C bond formation. Among the transition metal complexes screened, the RuH2(CO)(PPh3)3 complex showed the highest activity. Several aromatic ketones having methoxy or phenoxy groups at the ortho position can also be used in this coupling reaction. A variety of arylboronates containing electron-donating (NMe2, OMe, methyl, and vinyl) and -withdrawing (F and CF3) groups reacted with methoxy ketones to give the corresponding coupling products in high yields.  相似文献   

7.
We found that dioxiranes generated in situ from ketones 1-6 and Oxone underwent intramolecular oxidation of unactivated C-H bonds at delta sites of ketones to yield tetrahydropyrans. From the trans/cis ratio of oxidation products 1a and 2a as well as the retention of the configuration at the delta site of ketone 5, we proposed that the oxidation reaction proceeds through a concerted pathway under a spiro transition state. The intramolecular oxidation of ketone 6 showed the preference for a tertiary delta C-H bond over a secondary one. This intramolecular oxidation method can be extended to the oxidation of the tertiary gamma' C-H bond of ketones 9 and 10. For ketone 11 with two delta C-H bonds and one gamma' C-H bond linked respectively by a sp(3) hydrocarbon tether and a sp(2) ester tether, the oxidation took place exclusively at the delta C-H bonds. Finally, by introducing proper tethers, regioselective hydroxylation of steroid ketones 12-14 have been achieved at the C-17, C-16, C-3, and C-5 positions.  相似文献   

8.
The ruthenium-catalyzed carbonylation at a C-H bond in the benzene ring of a 2-phenyloxazoline is described. The reaction of 2-phenyloxazolines with CO and ethylene in toluene in the presence of a catalytic amount of Ru(3)(CO)(12) resulted in propionylation at an ortho C-H bond in the benzene ring. The presence of the oxazoline ring on the benzene ring is essential for the carbonylation to proceed. Other heterocycles, such as oxazine, oxazole, and thiazoline rings, also served as acceptable directing groups as did the oxazoline ring. A wide functional group compatibility was observed. The site selectivity of the carbonylation was examined using meta-substituted phenyloxazolines. It was found that the carbonylation took place exclusively at the less-hindered C-H bond, irrespective of the nature of substituents, indicating that the site selectivity was determined by steric factors. The reaction was also applicable, not only to a benzene ring, but also to naphthyl and thiophenyl rings. Olefins such as propene and trimethylvinylsilane in place of ethylene could also be used in the carbonylation reaction, while other olefins, such as 1-hexene, tert-butylethylene, vinylcyclohexane, isoprene, 1,5-hexadiene, cyclohexene, 1, 5-cyclooctadiene, styrene, methyl acrylate, vinyl acetate, allyltrimethylsilane, and triethoxyvinylsilane did not afford the coupling products. An equilibrium between 2-phenyloxazolines, carbon monoxide, and olefins exists on one hand and the corresponding ketones on the other hand, and product composition is governed by the equilibrium thermodynamics of the system. The results of deuterium labeling experiments suggest that the catalysis involves a reversible C-H bond cleavage and that the rate-determining step is not the cleavage of a C-H bond. The results of kinetic study of the effects of CO pressure show that the reaction rate accelerates with decreasing CO pressure.  相似文献   

9.
Ab initio method is employed to study the structures of twelve aromatic ketones at HF/3-21G, HF/6-31G and HF/6-31G levels, respectively. A theoretical analysis is also carried out to study the regioselectivity and reactivity of aromatic ketones in the addition with olefin catalyzed by RuH2(CO)(PPh3)3. The results indicate that a U shape LUMO conjugation of aromatic ketones in a plane plays an important role in regioselectivity on the cleavage of p C-H bond and is a nec-essary factor to success of addition with olefin, and that sterle effect is an indispensable factor in forming additional ortho-product. Meanwhile, electronic effect may influence the rate of addition for the structures alike which only have different replacements in the same site of aromatic ring, such as furan, thiophene and pyrole. A possible catalytic reaction mechanism is proposed that the addition of C-H bond may be carried out by a coordination of aromatic ketones with Ru complex.  相似文献   

10.
Coordinated fullerene acts as a hydrogen acceptor in reactions with compounds having weakened C-H bonds (1,4-dihydropyridine and 9,10-dihydroanthracene). Metal fullerides are the dehydrogenation catalysts. They activate the C-H bonds of dihydroanthracene and diethyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate in positions 9,10 and 1,4, respectively. No activation of norbornane carbon-hydrogen bonds with metal fullerides was observed under mild conditions.  相似文献   

11.
The equilibrium acidities (pK(AH)s) and the oxidation potentials of the congugate anions [E(ox)(A(-))s] were determined in dimethyl sulfoxide (DMSO) for eight ketones of the structure GCOCH(3) and 20 of the structure RCOCH(2)G, (where R = alkyl, phenyl and G = alkyl, aryl). The homolytic bond dissociation energies (BDEs) for the acidic C-H bonds of the ketones were estimated using the equation BDE(AH) = 1.37pK(AH) + 23.1E(ox)(A(-)) + 73.3. While the equilibrium acidities of GCOCH(3) were found to be dependent on the remote substituent G, the BDE values for the C-H bonds remained essentially invariant (93.5 +/- 0.5 kcal/mol). A linear correlation between pK(AH) values and [E(ox)(A(-))s] was found for the ketones. For RCOCH(2)G ketones, both pK(AH) and BDE values for the adjacent C-H bonds are sensitive to the nature of the substituent G. However, the steric bulk of the aryl group tends to exert a leveling effect on BDEs. The BDE of alpha-9-anthracenylacetophenone is higher than that of alpha-2-anthracenylacetophenone by 3 kcal/mol, reflecting significant steric inhibition of resonance in the 9-substituted system. A range of 80.7-84.4 kcal/mol is observed for RCOCH(2)G ketones. The results are discussed in terms of solvation, steric, and resonance effects. Ab initio density functional theory (DFT) calculations are employed to illustrate the effect of steric interactions on radical and anion geometries. The DFT results parallel the trends in the experimental BDEs of alpha-arylacetophenones.  相似文献   

12.
A mononuclear non-heme manganese(IV)-oxo complex has been synthesized and characterized using various spectroscopic methods. The Mn(IV)-oxo complex shows high reactivity in oxidation reactions, such as C-H bond activation, oxidations of olefins, alcohols, sulfides, and aromatic compounds, and N-dealkylation. In C-H bond activation, the Mn(IV)-oxo complex can activate C-H bonds as strong as those in cyclohexane. It is proposed that C-H bond activation by the non-heme Mn(IV)-oxo complex does not occur via an oxygen-rebound mechanism. The electrophilic character of the non-heme Mn(IV)-oxo complex is demonstrated by a large negative ρ value of -4.4 in the oxidation of para-substituted thioanisoles.  相似文献   

13.
Dioxiranes are important oxidants for organic reactions such as epoxidation, heteroatom oxidation and oxygenation of C-H bonds. We have developed a mild and general method for epoxidation of olefins using dioxiranes generated in situ from ketones and Oxone. This method has not only extended the synthetic utility of dioxiranes, but also allowed us to discover a series of novel cyclic ketones for catalytic oxidation. In particular, we have demonstrated the potential of chiral ketones for catalytic asymmetric epoxidation of trans-olefins and trisubstituted olefins. We have also explored the potential of ketones in catalyzing oxidation of unactivated C-H bonds and decomposition of peroxynitrite.  相似文献   

14.
We describe the first example of Rh-catalyzed intermolecular C-alkylation of cyclic 1,2-diketones using simple terminal olefins as alkylating agents. Aminopyridine is employed as a recyclable directing group. First, it reacts with ketones to give enamines and delivers Rh to activate the vinyl C-H bonds in the same pot; second, it can be cleaved off and recovered via hydrolysis. A broad range of olefins can be utilized as substrates, including aliphatic, aromatic olefins and vinyl esters. The efficiency of this method is also demonstrated in the synthesis of a natural flavoring compound, 3-ethyl-5-methyl-1,2-cyclopentadione (one-pot 53% yield vs a previous four-step route 16% yield from the same starting material). This work is expected to serve as a seminal study toward catalytic ketone α-alkylation with unactivated olefins.  相似文献   

15.
The complex TpBr3Cu(NCMe) catalyzes, at room temperature, the insertion of a nitrene group from PhINTs into the carbon-hydrogen bond of cyclohexane and benzene, as well as into the primary C-H bonds of the methyl groups of toluene and mesitylene, in moderate to high yield.  相似文献   

16.
Monomeric imidozirconocene complexes of the type Cp2(L)Zr=NCMe3 (Cp = cyclopentadienyl, L = Lewis base) have been shown to activate the carbon-hydrogen bonds of benzene, but not the C-H bonds of saturated hydrocarbons. To our knowledge, this singularly important class of C-H activation reactions has heretofore not been observed in imidometallocene systems. The M=NR bond formed on heating the racemic ethylenebis(tetrahydro)indenyl methyl tert-butyl amide complex, however, cleanly and quantitatively activates a wide range of n-alkane, alkene, and arene C-H bonds. Mechanistic experiments support the proposal of intramolecular elimination of methane followed by a concerted addition of the hydrocarbon C-H bond. Products formed by activation of sp2 C-H bonds are generally more thermodynamically stable than those formed by activation of sp3 C-H bonds, and those resulting from reaction at primary C-H bonds are preferred over secondary sp3 C-H activation products. There is also evidence that thermodynamic selectivity among C-H bonds is sterically rather than electronically controlled.  相似文献   

17.
This communication describes the development of a new Pd-catalyzed method for the fluorination of carbon-hydrogen bonds. A key step of these transformations involves palladium-mediated carbon-fluorine coupling-a much sought after, but previously unprecedented, transformation. These reactions were successfully achieved under oxidative conditions using electrophilic N-fluoropyridinium reagents. Microwave irradiation in the presence of catalytic palladium acetate served as optimal conditions for the fluorination of C-H bonds in a variety of substituted 2-arylpyridine and 8-methylquinoline derivatives.  相似文献   

18.
The development of new catalytic methods to functionalize carbon-hydrogen (C-H) bonds continues to progress at a rapid pace due to the significant economic and environmental benefits of these transformations over traditional synthetic methods. In nature, enzymes catalyze regio- and stereoselective C-H bond functionalization using transformations ranging from hydroxylation to hydroalkylation under ambient reaction conditions. The efficiency of these enzymes relative to analogous chemical processes has led to their increased use as biocatalysts in preparative and industrial applications. Furthermore, unlike small molecule catalysts, enzymes can be systematically optimized via directed evolution for a particular application and can be expressed in vivo to augment the biosynthetic capability of living organisms. While a variety of technical challenges must still be overcome for practical application of many enzymes for C-H bond functionalization, continued research on natural enzymes and on novel artificial metalloenzymes will lead to improved synthetic processes for efficient synthesis of complex molecules. In this critical review, we discuss the most prevalent mechanistic strategies used by enzymes to functionalize non-acidic C-H bonds, the application and evolution of these enzymes for chemical synthesis, and a number of potential biosynthetic capabilities uniquely enabled by these powerful catalysts (110 references).  相似文献   

19.
Mechanistic studies of the ruthenium-catalyzed reaction of aromatic ketones with olefins are presented. Treatment of the original catalyst, RuH(2)(CO)(PPh(3))(3), with trimethylvinylsilane at 90 °C for 1-1.5 h afforded an activated ruthenium catalyst, Ru(o-C(6)H(4)PPh(2))(H)(CO)(PPh(3))(2), as a mixture of four geometric isomers. The activated complex showed high catalytic activity for C-H/olefin coupling, and the reaction of 2'-methylacetophenone with trimethylvinylsilane at room temperature for 48 h gave the corresponding ortho-alkylation product in 99% isolated yield. The activated catalyst was thermally robust and showed excellent catalytic activity under refluxing toluene conditions. (1)H and (31)P NMR studies of the C-H/olefin coupling at room temperature suggested that an ortho-ruthenated complex, P,P'-cis-C,H-cis-Ru(2'-(6'-MeC(6)H(4)C(O)Me))(H)(CO)(PPh(3))(2), participated in the reaction as a key intermediate. Isotope labeling studies using acetophenone-d(5) indicated that the rate-limiting step was the C-C bond formation, not the C-H bond cleavage, and that each step prior to the reductive elimination was reversible. The rate of C-H/olefin coupling was found to exhibit pseudo first-order kinetics and to show first-order dependence on the ruthenium complex concentration.  相似文献   

20.
Ab initio method is employed to study the structures of twelve aromatic ketones at HF/3-21G, HF/6-31G and HF/6-31G* levels, respectively. A theoretical analysis is also carried out to study the regioselectivity and reactivity of aromatic ketones in the addition with olefin catalyzed by RuH2(CO)(PPh3)3. The results indicate that a U shape LUMO conjugation of aromatic ketones in a plane plays an important role in regioselectivity on the cleavage of β C-H bond and is a necessary factor to success of addition with olefin, and that steric effect is an indispensable factor in forming additional ortho-product. Meanwhile, electronic effect may influence the rate of addition for the structures alike which only have different replacements in the same site of aromatic ring, such as furan, thiophene and pyrole. A possible catalytic reaction mechanism is proposed that the addition of C-H bond may be carried out by a coordination of aromatic ketones with Ru complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号