首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
If p(z) is a polynomial of degree n having all its zeros on |z| = k, k ≤ 1, then it is proved[5] that max |z|=1 |p′(z)| ≤ kn1n + kn m|z|=ax1 |p(z)|. In this paper, we generalize the above inequality by extending it to the polar derivative of a polynomial of the type p(z) = cnzn + ∑n j=μ cn jzn j, 1 ≤μ≤ n. We also obtain certain new inequalities concerning the maximum modulus of a polynomial with restricted zeros.  相似文献   

2.
Пусть? — возрастающа я непрерывная фцнкци я на [0,π],?(0)=0 и $$\mathop \smallint \limits_0^h \frac{{\varphi \left( t \right)}}{t}dt = O\left( {\varphi \left( h \right)} \right){\text{ }}\left( {h \to 0} \right).$$ Положим $$\psi \left( h \right) = h\mathop \smallint \limits_h^\pi \frac{{\varphi \left( t \right)}}{{t^2 }}dt \left( {h \in (0, \pi ]} \right).$$ Доказывается следую щая теорема.Пусть f∈ С[?π, π], ω(f, δ)=О(?(δ))) и $$\mathop {\lim }\limits_{h \to 0} \frac{1}{{\varphi \left( {\left| h \right|} \right)}}\left| {f\left( {x + h} \right) - f\left( x \right)} \right| = 0$$ для x∈E?[?π, π], ¦E¦>0. Тогда д ля сопряженной функц ии f почти всюду на E выполн яется соотношение $$\mathop {\lim }\limits_{h \to 0} \frac{1}{{\psi \left( {\left| h \right|} \right)}}\left| {\tilde f\left( {x + h} \right) - \tilde f\left( x \right)} \right| = 0.$$ Из этой теоремы вытек ает положительное ре шение одной задачи Л. Лейндлера.  相似文献   

3.
Let f be a complex-valued multiplicative function, letp denote a prime and let π(x) be the number of primes not exceeding x. Further put $$m_p (f): = \mathop {\lim }\limits_{x \to \infty } \frac{1}{{\pi (x)}}\sum\limits_{p \leqslant x} {f(p + 1)} {\text{, }}M(f): = \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\sum\limits_{n \leqslant x} {f(n)}$$ and suppose that $$\mathop {\lim \sup }\limits_{x \to \infty } \frac{1}{x}\sum\limits_{n \leqslant x} {\left| {f\left( n \right)} \right|^2 } < \infty ,\sum\limits_{p \leqslant x} {\left| {f\left( n \right)} \right|^2 } \ll x\left( {\ln x} \right)^{ - \varrho } ,$$ with some \varrho > 0. For such functions we prove: If there is a Dirichlet character χ_d such that the mean-value M(f χ_d) exists and is different from zero,then the mean-value m_p(f) exists. If the mean-value M(f) exists, then the same is true for the mean-valuem_p(f) .  相似文献   

4.
We prove the convergence in theL 1(0, 1)-metric of Walsh-Fourier series \(\sum\limits_{k = 0}^\infty {a_k w_k \left( x \right)} \) of an integrable function with coefficients such that limn→∞ and the following Tauberian condition of Hardy-Karamata kind is satisfied: $$\mathop {lim}\limits_{\lambda \to 1 + 0} {\text{ }}\mathop {lim}\limits_{n \to \infty } \sum\limits_{k = n}^{\left[ {\lambda n} \right]} {k^{p - 1} \left| {\Delta a_k } \right|^p } = 0,$$ , wherep>1, [·] denotes the integral part, and Δa k=ak?ak+1.  相似文献   

5.
A Littlewood-Paley type inequality   总被引:2,自引:0,他引:2  
In this note we prove the following theorem: Let u be a harmonic function in the unit ball and . Then there is a constant C = C(p, n) such that
.  相似文献   

6.
Suppose z 1, z 2, ... z n are complex numbers with absolute values more than 1 and Arg z j Arg z k for j k where Arg w stands for the argument of the complex number w in [0,2). In this note we show that
We also give necessary and sufficient conditions for equality in the above inequality. As an application, we improve the result of Govil and Labelle on Bernstein's inequality for some special polynomials.  相似文献   

7.
Let be a primitive character mod k, k > 2. In [1], the following elementary estimate
was given, where
by definition. In the present note we sharpen this estimate by a factor 3/4 in the case of an even primitive character , by improving upon the proof given in [1] in a way which does not alter the elementary character of the method.  相似文献   

8.
Assume that the coefficients of the series $$\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i = 1}^m \sin k_i x_i $$ satisfy the following conditions: a) ak → 0 for k1 + k2 + ...+km →∞, b) \(\delta _{B,G}^M (a) = \mathop {\mathop \sum \limits_{k_i = 1}^\infty }\limits_{i \in B} \mathop {\mathop \sum \limits_{k_j = 2}^\infty }\limits_{j \in G} \mathop {\mathop \sum \limits_{k_v = 0}^\infty }\limits_{v \in M\backslash (B \cup G)} \mathop \Pi \limits_{i \in B} \frac{1}{{k_i }}|\mathop \sum \limits_{I_j = 1}^{[k_j /2]} (\nabla _{l_G }^G (\Delta _1^{M\backslash B} a_k ))\mathop \Pi \limits_{j \in G} l_j^{ - 1} |< \infty ,\) for ∨B?M, ∨G?M,BG, where M={1,2, ...,m}, $$\begin{gathered} \,\,\,\,\,\,\,\,\,\,\,\,\Delta _1^j a_k = a_k - a_{k_{M\backslash \{ j\} } ,k_{j + 1} } ,\Delta _1^B a_k = \Delta _1^{B\backslash \{ j\} } (\Delta _1^j a_k ), \hfill \\ \Delta _{l_j }^j a_k = a_{k_{M\backslash \{ j\} } ,k_j - l_j } - a_{k_{M\backslash \{ j\} } ,k_j + l_j } ,\nabla _{l_G }^G a_k = \nabla _{l_{G\backslash \{ j\} } }^{G\backslash \{ j\} } (\nabla _{l_j }^j a_k ). \hfill \\ \end{gathered} $$ Then for all n∈Nm the following asymptotic equation is valid: $$\mathop \smallint \limits_{{\rm T}_{\pi /(2n + 1)}^m } |\mathop \sum \limits_{k \in N^m } a_k \mathop \Pi \limits_{i \in M} \sin k_i x_i |dx = \mathop \sum \limits_{k = 1}^n \left| {a_k } \right|\mathop \Pi \limits_{i \in M} k^{ - 1} + O(\mathop {\mathop \sum \limits_{B,{\mathbf{ }}G \subset M} }\limits_{B \ne M} \delta _{B,G}^M (a)).$$ Here \(T_{\pi /(2n + 1)}^m = \left\{ {x = (x1,x2,...,xm):\pi /(2n + 1) \leqq xi \leqq \pi ;i = \overline {1,m} } \right\}\) . In the one-dimensional case such an equation was proved by S. A. Teljakovskii.  相似文献   

9.
Sunto Si prova un teorema di tracce per spazi di funzioni, definite su R + n , con norme del tipo . Entrata in Redazione il 23 luglio 1969. Lavoro eseguito nell'ambito dei gruppi di ricerca del Comitato Nazionale per la Matematica del C.N.R.  相似文献   

10.
Letf be an entire function (in Cn) of exponential type for whichf(x)=0(?(x)) on the real subspace \(\mathbb{R}^w (\phi \geqslant 1,{\mathbf{ }}\mathop {\lim }\limits_{\left| x \right| \to \infty } \phi (x) = \infty )\) and ?δ>0?Cδ>0 $$\left| {f(z)} \right| \leqslant C_\delta \exp \left\{ {h_s (y) + S\left| z \right|} \right\},z = x + iy$$ where h, (x)=sup〈3, x〉, S being a convex set in ?n. Then for any ?, ?>0, the functionf can be approximated with any degree of accuracy in the form p→ \(\mathop {\sup }\limits_{x \in \mathbb{R}^w } \frac{{\left| {P(x)} \right|}}{{\varphi (x)}}\) by linear combinations of functions x→expi〈λx〉 with frequenciesX belonging to an ?-neighborhood of the set S.  相似文献   

11.
Uniform Approximation of Nonperiodic Functions Defined on the Entire Axis   总被引:1,自引:1,他引:0  
Using the following notation: C is the space of continuous bounded functions f equipped with the norm , V is the set of functions f such that , the set E consists of fCV and possesses the following property:
is summable on each finite interval, we establish some assertions similar to the following theorem: Let 0$$ " align="middle" border="0"> ,
Then for fV the series
uniformly converges with respect to and the following equality holds:
This theorem develops some results obtained by Zubov relative to the approximation of probability distributions. Bibliography: 4 titles.  相似文献   

12.
Let f and g be multiplicative functions of modulus 1. Assume that \( {\lim_{x \to \infty }}\frac{1}{x}\left| {\sum\nolimits_{n \leqslant x} {f(n)} } \right| = A > 0 \) and \( {\lim_{x \to \infty }}\frac{1}{x}\left| {\sum\nolimits_{n \leqslant x} {g(n)} } \right| = 0 \). We prove that, under these conditions,
$ \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\sum\limits_{n \leqslant x} {f(n)g(n + 1) = 0.}$
Concerning the Liouville function λ, we find an upper estimate for \( \frac{1}{x}\left| {\sum\limits_{n \leqslant x} {\lambda (n)\lambda (n + 1)} } \right| \) under the unproved hypothesis that L(s, χ) have Siegel zeros for an infinite sequence of L-functions.
  相似文献   

13.
When E is a closed set of measure zero in the dyadic group and the Walsh series satisfies
, then for some c > 0,
Consequently any control function of the a.e. convergence is not L/(log+ L)-integrable.  相似文献   

14.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

15.
A power series with radius of convergence equal 1 is called a (p,A)-lacunary one if nk ≥ Akp, A > 0, 1 < p < ∞. It is proved that if 1 < p < 2 and f(x) is a (p,A)-lacunary series that satisfies the condition
, where
, for some ε > 0, then f ≡ 0. We construct a (p,A)-lacunary series f 0 such that
with a constant C0 = C0(p,A) > 0. Bibliography: 4 titles. __________ Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 327, 2003, pp. 135–149.  相似文献   

16.
стАтьь ьВльЕтсь пРОД ОлжЕНИЕМ пРЕДыДУЩЕИ ОДНОИМЕННОИ РАБОты АВтОРА, гДЕ ИжУ ЧАлсь пОРьДОк ВЕлИЧИН пРИ УслОВИьх, ЧтО α>-1/2, Рα >- 1 И ЧтО МАтРИцАt nk УДОВлЕтВОРьЕт НЕкОт ОРОМУ УслОВИУ РЕгУльРНОстИ. жДЕсь ДОкАжыВАЕтсь, Ч тО ЕслИfH Ω, тО ВыпОлНь Етсь ОцЕНкА $$\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left| {\sigma _k^\alpha \left( x \right) - f\left( x \right)} \right|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} = O\left( {\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left( {\frac{1}{k}\mathop \smallint \limits_{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}}^{2\pi } \frac{{\omega \left( t \right)}}{{t^2 }}dt} \right)^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} + \left( {\frac{{\lambda _n }}{n}} \right)^\alpha \omega \left( {\frac{1}{n}} \right)} \right)$$ 1=1, λn+1n≦1), А тАкжЕ ЧтО Ёт А ОцЕНкА ОкОНЧАтЕльН А В сВОИх тЕРМИНАх; пОДОБ НыИ РЕжУль-тАт спРАВЕДлИВ тАкжЕ И Дль сОпРьжЕННОИ ФУНкцИИ . ДОкАжыВАЕтсь, ЧтО Усл ОВИьα>?1/2 И>?1, кОтОРыЕ Б ылИ НАлОжЕНы В УпОМьНУтО И ВышЕ ЧАстИ I, сУЩЕстВЕН Ны.  相似文献   

17.
Найдены методы восст ановления интеграла по информации $$I\left( f \right) = \left\{ {f^{(j)} \left( {x_i } \right)\left( {j = 0, ..., \gamma _i - 1; i = 1, ..., n; 1 \leqq \gamma _i \leqq r; \gamma _i + ... + \gamma _n \leqq N} \right.} \right\},$$ оптимальные на класс ахW p r ,r=1,2,...; 1≦p≦∞. Это позволило, в частност и, получить наилучшие для классаW p r квадратурные форму лы вида $$\mathop \smallint \limits_0^1 f\left( x \right)dx = \mathop \Sigma \limits_{i = 1}^n \mathop \Sigma \limits_{j = 1}^{\gamma _i - 1} a_{ij} f^{(j)} \left( {x_i } \right) + \mathop \Sigma \limits_{j = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} b_j f^{(2j - 1)} \left( 0 \right) + \mathop \Sigma \limits_{k = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} c_k f^{(2k - 1)} \left( 1 \right) + R\left( f \right)$$ И $$\mathop \smallint \limits_0^1 f\left( x \right)dx = af\left( 0 \right) + \mathop \Sigma \limits_{i = 1}^n \mathop \Sigma \limits_{j = 0}^{\gamma _i - 1} a_{ij} f^{(j)} \left( {x_i } \right) + bf\left( 1 \right) + \mathop \Sigma \limits_{j = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} b_j f^{(2j - 1)} \left( 0 \right) + \mathop \Sigma \limits_{k = 1}^{[{r \mathord{\left/ {\vphantom {r 2}} \right. \kern-\nulldelimiterspace} 2}]} c_k f^{(2k - 1)} \left( 1 \right) + R\left( f \right).$$   相似文献   

18.
Suppose thatx(t) ∈ C [a,b (n)] and has n zeros at the pointsa and b. It is shown that if x(n)(t) preserves sign on [a, b], then $$\left| {x\left( t \right)} \right| \geqslant \frac{{p_0 }}{{n - 1}}\mathop {\left[ {\mathop {\sup }\limits_{\tau \in \left( {a, b} \right)} \frac{{\left| {x\left( \tau \right)} \right|}}{{\left( {\tau - a} \right)^{p - 1} \left( {b - \tau } \right)^{q - 1} }}} \right]}\limits_{\left( {a< t< b} \right),} \left( {t - a} \right)^p \left( {b - t} \right)^q $$ where p and q are the multiplicities of the zeros of x(t) ata and b, respectively, and po=min{p,q}. Two-sided estimates of the Green's function for a two-point interpolation problem for the operator Lx ≡ x(n) are established in the proof. As an application, new conditions for the solvability of de la Vallée Poussin's two-point boundary problems are obtained.  相似文献   

19.
Carl  Bernd  Defant  Andreas 《Positivity》2000,4(2):131-141
A celebrated result of Johnson, Maurey, König and Retherford from 1977 states that for every complex matrix satisfies the following eigenvalue estimate:
Based on the concept of entropy numbers and a simple product trick we give a selfcontained elementary proof.  相似文献   

20.
Let C(Q) denote the space of continuous functions f(x, y) in the square Q = [?1, 1] × [?1, 1] with the norm $\begin{gathered} \left\| f \right\| = \max \left| {f(x,y)} \right|, \hfill \\ (x,y) \in Q. \hfill \\ \end{gathered} $ On a Chebyshev grid, a cubature formula of the form $\int\limits_{ - 1}^1 {\int\limits_{ - 1}^1 {\frac{1} {{\sqrt {(1 - x^2 )(1 - y^2 )} }}f(x,y)dxdy = \frac{{\pi ^2 }} {{mn}}\sum\limits_{i = 1}^n {\sum\limits_{j = 1}^m {f\left( {\cos \frac{{2i - 1}} {{2n}}\pi ,\cos \frac{{2j - 1}} {{2m}}\pi } \right)} + R_{m,n} (f)} } } $ is considered in some class H(r 1, r 2) of functions f ?? C(Q) defined by a generalized shift operator. The remainder R m, n (f) is proved to satisfy the estimate $\mathop {\sup }\limits_{f \in H(r_1 ,r_2 )} \left| {R_{m,n} (f)} \right| = O(n^{ - r_1 + 1} + m^{ - r_2 + 1} ), $ where r 1, r 2 > 1; ???1 ?? n/m ?? ?? with ?? > 0; and the constant in O(1) depends on ??.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号