首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
为了实现油菜叶片中叶绿素含量的快速无损检测,开发了手持式多光谱成像系统用于采集油菜叶片在460,520,660,740,840和940 nm 六个波段的光谱图像。将一台能够采集可见光/近红外(380~1 023 nm)512个波段光谱图像但是价格高昂且体积大的室内高光谱成像系统作为参考仪器,将手持式多光谱成像系统作为目标仪器后,采用伪逆法(pseudo-inverse method)求得高光谱成像系统和多光谱成像系统两台仪器之间的转换矩阵F,从而实现6个波段的多光谱图像向512个波段的高光谱图像的重构,提高了手持式设备的光谱分辨率。运用偏最小二乘回归算法(PLSR)建立了重构的光谱与油菜叶片的叶绿素含量之间的关系模型。结果表明,重构的可见光范围内的光谱反射率与叶绿素浓度之间具有很强的相关性,PLSR回归模型建模集的决定系数R2c为0.82,建模集均方根误差RMESC为1.98,预测集的决定系数R2p为0.78,预测集均方根误差RMESP为1.50,RPD为2.14。虽然应用本文开发的手持式成像系统结合PLSR模型实现油菜叶绿素含量快速无损预测的精度低于基于室内高光谱成像系统获得的高光谱图像建立的PLSR模型(R2c,RMESC,R2p,RMESP和RPD分别为0.90,1.41,0.82,1.36和2.37),但是明显优于基于原始多光谱成像系统4个波段(460,520,660和740 nm)反射率建立的PLSR模型得到的结果(R2c,RMESC,R2p,RMESP和RPD分别为0.78,2.06,0.72,1.85和1.88)。表明光谱重构技术可提高多光谱成像预测油菜叶绿素含量的精度,并且与室内高光谱成像系统相比,开发的手持式设备具有体积小、成本低廉和操作简便等优点,可为田间油菜叶片的生理状态和养分检测及可视化表达提供技术支持。  相似文献   

2.
利用高光谱反射率光谱的特征波段构建光谱指数,建立叶绿素含量反演模型是实现水稻生产精准调控和科学管理的必要手段之一。为了建立适用于拔节孕穗期水稻叶片叶绿素相对含量(SPAD)的高光谱反演模型,分别获取了拔节孕穗期水稻叶片的高光谱和SPAD数据,利用小波分析法对原始光谱反射率曲线进行降噪处理,并对基于积分运算的光谱指数NAOC进行简化,获得了基于双波段简化运算的优化光谱指数。利用相关分析法计算由原始反射率光谱R和数学变换光谱LgR、1/RR构建的优化光谱和变换光谱指数与水稻叶片SPAD的相关系数,获得了以积分限(a,b)为横、纵坐标的相关系数二维矩阵,并绘制相关性等势图,得到相关系数最高的3个波段组合:R(641,790)(0.872 6),R(653,767)(0.871 7)和R(644,774)(0.871 6),计算出20个原始样本中3个积分波段组合所对应的60个优化光谱指数值,按照2∶1的比例划分为建模集和验证集,建立了三种水稻叶片SPAD反演模型:偏最小二乘回归(PLSR)、支持向量机(SVM)和BP神经网络模型。结果显示:利用优化光谱和变换光谱指数建立的3种水稻叶片SPAD反演模型决定系数R2均大于0.79,归一化均方根误差NRMSE则小于5.4%。其中BP神经网络相对于其他两种模型具有较高的拟合度,预测精度也相对较高,建模集R2=0.842 6,NRMSE=5.152 7%;验证集R2=0.857,NRMSE=4.829 9%。总体来看,基于双波段简化运算后的优化光谱和变换光谱指数建立拔节孕穗期水稻叶片SPAD反演模型是可行的;对比分析3种模型反演结果发现,BP神经网络对水稻叶片SPAD的反演效果较好。该工作对提高拔节孕穗期水稻精准调控技术和建立水稻生产的科学管理体系具有一定的参考价值。  相似文献   

3.
已有的土壤有机质含量估测模型大多以光谱特征波段、线性和非线性模型为基础,较少考虑通过拓展样本数据建模集来提高模型的估测能力。为进一步提高土壤有机质高光谱反演模型估测精度,提出利用生成式对抗网络(GAN)合成伪高光谱数据和有机质含量的动态估测模型。选取湖南省长沙市及周边区域的水稻田为研究对象,采集土样和实测高光谱数据(350~2 500 nm),室内化学测定有机质含量。以高光谱数据和有机质含量为基础,利用生成式对抗网络生成等量新数据, 结合原始数据建模集组成增强建模集。在GAN正式训练中,每轮训练完成后,设置4个观测点(对应增强建模集中含50,100,150和239个生成样本),动态构建交叉验证岭回归(RCV)、偏最小二乘回归(PLSR)和BP神经网络(BPNN)土壤有机质含量估测模型(分别简称GAN-RCV,GAN-PLSR和GAN-BPNN),并在相同测试集上实施模型评估。实验结果表明:(1)原始数据建模集上拟合的估测模型中,交叉验证岭回归表现最佳,决定系数(R2)和均方根误差(RMSE)分别为0.831 1和0.189 6;(2)GAN的150轮正式训练中,增强建模集上动态构建的GAN-RCV,GAN-PLSR和GAN-BPNN模型性能显著提高,具体表现为:GAN-RCV的R2取得最大值0.890 9(RMSE 0.153 7)、最小值0.850 5 (RMSE 0.18)与平均值0.868 7(RMSE 0.168 6),最大R2比建模集上拟合的RCV提高了7.2%(RMSE降低了18.9%),GAN-PLSR获得R2最大值0.855 4(RMSE 0.176 9)、最小值0.727 0 (RMSE 0.243 2)与平均值0.780 1 (RMSE 0.217 7),最大R2比建模集上拟合的PLSR提高了20.6%(RMSE降低了29.5%),GAN-BPNN表现最佳,R2取得最大值0.905 2(RMSE 0.143 3)、最小值0.801 7(RMSE 0.207 3)与平均值0.868 1(RMSE 0.168 6),最大R2比建模集上拟合的BPNN提高了30.8%(RMSE降低了44.5%);(3)随着增强建模集中生成样本数量增加,模型精度提升效果呈先升后降趋势,4个观测点中第3个观测点的模型性能提升最显著。充分的实验表明:基于GAN动态构建的有机质含量估测模型显著改善了模型预测性能。依据测试集上的评估结果,可择优使用最佳模型进行后续土壤有机质含量估测。  相似文献   

4.
土壤Cd含量实验室与野外DS光谱联合反演   总被引:3,自引:0,他引:3  
土壤重金属高光谱遥感建模理论上能够大大降低传统化学分析测定所需成本,正逐步发展为有效探查土壤污染空间分布与开展污染土壤综合防治的关键技术。然而土壤重金属高光谱遥感调查技术目前多局限于稳定可控条件下的实验室光谱模型,野外诸多因素(光照、湿度、土壤粗糙度等)影响下野外原位光谱模型的有效性已成为困扰该项技术大范围推广亟待突破的关键科学问题。以湖南衡阳市某矿区为例,分别利用ASD地物光谱仪和等离子发射光谱法测定46个土壤样品350~2 500 nm的实验室光谱和Cd含量,并在土壤取样时同步测量样品野外原位光谱。在运用DS(direct standardization)转换算法处理野外光谱的基础上,融合实验室光谱先验知识,基于主成分逐步回归建模方法开展了土壤Cd含量实验室与野外原位DS光谱联合反演实验,交叉验证了模型的稳定性。同时为深入探究实验室与野外原位DS光谱联合反演模型的有效性,将其与基于实验室光谱、野外原位光谱、野外原位DS光谱、实验室与野外原位光谱联合建立的主成分逐步回归模型开展了对比分析。结果表明:野外原位光谱反演模型精度(R2=0.56)明显低于实验室光谱反演模型(R2=0.64),野外原位DS光谱反演模型与之相比精度有所提升(R2=0.66);在野外原位光谱DS转换校正基础上,联合实验室光谱先验知识的土壤Cd含量反演模型精度最高,R2可达0.72。与此同时,实验室与野外原位DS光谱联合反演模型揭示482,565,979和2 206 nm波段对研究区土壤Cd含量有较好指示性,此结果与实验室光谱反演模型所识别的特征波段一致,两者物理意义相同。研究结果证实了实验室光谱先验知识以及DS转换算法能够提升野外原位光谱模型的可靠性,可为发展土壤Cd含量野外原位高光谱遥感探测提供重要的提供理论与方法支撑。  相似文献   

5.
OLI与6SV的褐土带煤炭开采沉陷区土壤有机碳反演   总被引:1,自引:0,他引:1  
遥感反演已广泛应用于区域土壤理化性质的动态监测,但是鲜有针对有机碳含量低、下垫面不均一等土壤光谱特性不显著区域的研究。黄土高原褐土带地形多样,丘陵广布,有机碳含量低。采煤活动引起大面积土壤退化,土壤光谱特性受到强烈干扰,制约了区域尺度土壤有机碳(soil organic carbon)含量遥感反演精度。以山西省褐土带典型采煤沉陷区为例,借助地表反射率和室外实地采集的样本数据对褐土带煤矿开采沉陷区土壤有机碳含量进行反演。采用结合高空间、时间分辨率辅助气象数据的6SV(second simulation of a satellite signalin the solar spectrum-vector)模型和FLAASH(fast line-of-sight atmospheric analysis of spectral hypercubes)模型对研究区Landsat8 OLI影像的大气校正方法进行对比实验,分析其对褐土带采煤沉陷区土壤光谱曲线及有机碳含量的影响,识别敏感波段。选择原始光谱反射率(R)和平方根()、倒数的对数log(1/R)、一阶微分(R′)等数学变换形式,利用多元线性回归(MLR)、BP神经网络(BP neural net)和偏最小二乘回归(PLSR)建立土壤有机碳反演模型。结果表明:6SV模型大气校正的效果要优于FLAASH模型,可以有效消除大气、地形对于反射率的干扰,可见光波段反射率降低而近红外波段明显上升,不同有机质含量等级土壤反射光谱特性分明;640~670,850~880,1 570~1 600和2 110~2 290 nm波段对土壤有机碳含量指示性强;相较于多元线性回归(决定系数R2为0.765)、BP神经网络(R2为0.767),偏最小二乘回归模型反演精度最高(R2为0.778);结合高空间、时间分辨率辅助气象数据的6SV大气校正模型与偏最小二乘回归建模能显著提高褐土带采煤沉陷区土壤有机碳的反演精度。在此基础上预测研究区2013年-2015年土壤有机碳含量,研究发现:研究区土壤有机碳含量中部高,两侧低,复垦使土壤有机碳含量得到恢复。研究结果可用于揭示黄土高原褐土带采煤沉陷区土壤有机碳含量的时空分布特征,为改进区域土壤光谱分析、土地复垦评价、建立褐土带采煤沉陷区碳通量观测网络和土壤碳库估算提供理论和技术支持,对研究区域甚至全球范围褐土带生态可持续发展提供依据。  相似文献   

6.
土壤修复过程中盐含量及其光谱特征分析研究   总被引:3,自引:0,他引:3  
基于盐渍土修复过程中盐分含量和同步实测光谱数据,通过对原始光谱数据、平滑光谱数据及平滑后的不同变换光谱数据等八种光谱数据集,分别以相关系数的极值和不同相关系数范围两种方法分析其最佳敏感波段范围,深入分析了不同变换下土壤的光谱响应特征。在此基础上,运用偏最小二乘回归方法,以全波段(400~1 650 nm)和分析获得的最佳敏感波段建立了基于修复过程的土壤盐含量和光谱反射率的关系模型。结果表明:针对八种光谱数据集,采用两种方法提取的土壤最佳敏感波段,均集中在947.11~949.31,1 340.27,1 394.11,1 419,1 457.81~1 461.31,1 537.68~1 551.39和1 602.32 nm;且最佳波段的土壤盐含量反演模型,以模型评价参数的决定系数(R2)和均方根误差(RMSE),以及赤池信息量准则(akaike’s information criterion, AIC)作为选择最佳模型的标准,均以SGSD(Log R)模型的建模和预测结果比其他光谱变换的模型更为显著。基于全波段的PLSR建模效果总体上稍优于最佳波段的模型,其中以SGSD的预测精度最为突出,其模型的决定系数R2与标准差RMSEP分别为0.673和1.256;基于两种方法获得的最佳波段的PLSR模型与全波段对比在模型精度方面虽有一定差距,但从模型的复杂程度比较,具有模型简单、变量更少及运算量小的特点。该研究可在土壤盐含量及其光谱特征的研究中,为实现土壤盐渍化定量、快速、便捷的监测和检测提供参考。  相似文献   

7.
基于高斯回归分析的水稻氮素敏感波段筛选及含量估算   总被引:1,自引:0,他引:1  
水稻氮素含量的准确监测是稻田精准施肥的重要环节,水稻叶片氮素含量发生变化会引起叶片、冠层的光谱发射率发生变化,高光谱遥感是目前作物氮素无损监测的关键技术之一。以2018年-2019年湖北监利两年水稻氮肥试验为基础,分别获取水稻分蘖期、拔节期、孕穗期、扬花期、灌浆期五个生育期水稻叶片和冠层两个尺度的高光谱反射率数据及对应的叶片氮素含量数据,利用单波段原始光谱和一阶导数光谱的相关性分析、高斯过程回归(GPR)等方法筛选水稻全生育期叶片及冠层尺度氮素敏感波段。针对敏感波段,利用单波段回归分析、随机森林(RF)、支持向量回归(SVR)、高斯过程回归-随机森林(GPR-RF)、高斯过程回归-支持向量回归(GPR-SVR)和GPR构建水稻氮素监测模型,并进行精度对比,以确定水稻叶片在各生育期的氮素估算最佳模型。结果表明:GPR筛选的敏感波段符合水稻氮素含量及光谱变化的规律。相同条件下,叶片模型精度整体高于冠层模型。相关性分析模型中,叶片尺度原始光谱模型更好,冠层尺度刚好相反,冠层一阶导数光谱可以减弱稻田背景噪声的影响。其中,叶片最佳模型建模集R2为0.79,验证集R2为0.84;冠层最佳模型建模集R2为0.80,验证集R2为0.77。与相关性回归分析模型相比,机器学习模型受生育期影响小(R2>0.80,NRMSE<10%)。其中,RF比SVR更适合对GPR敏感波段建模,GPR-RF模型可以用1.5%左右的波段达到RF模型使用全部波段的精度。五种方法中,GPR模型对生育期敏感度最低、叶片及冠层尺度效果都很好(R2>0.94,NRMSE<6%)。且与其他四种机器学习方法相比,GPR模型可有效提高冠层氮素含量估算的精度和稳定性(R2增加0.02,NRMSE降低1.2%)。GPR方法可为筛选作物氮素高光谱敏感波段、反演各生育期叶片及冠层氮素含量提供方法参考。  相似文献   

8.
利用光谱信息快速、无损和准确的检测水稻冠层叶片叶绿素含量,对水稻的长势评估、精准施肥、科学管理都具有非常重要的现实意义。以东北粳稻为研究对象,以小区试验为基础,获取关键生长期的水稻冠层高光谱数据。首先采用标准正态变量校正法(SNV)对光谱数据进行预处理,针对处理后光谱数据,以随机蛙跳(RF)算法为基础,结合相关系数分析法(CC)和续投影算法(SPA),提出一种融合两种初选波段的改进型随机蛙跳算法(fpb-RF)筛选叶绿素含量的特征波段,并分别与标准RF,CC 和SPA方法进行对比。以提取的特征波段作为输入,结合线性模型和非线性模型各自优势,提出一种高斯过程回归(GPR)补偿偏最小二乘(PLSR)的叶绿素含量混合预测模型(GPR-P):利用PLSR法对水稻叶绿素含量初步预测,得到叶绿素含量的线性趋势,然后利用具有较好非线性逼近能力的GPR对PLSR模型偏差进行预测,两者叠加得到最终预测值。为了验证所提方法优越性,以不同方法提取的特征波段作为输入,分别建立PLSR、最小二乘支持向量机(LSSVM)、BP神经网络预测模型。结果表明:相同预测模型条件下,改进fpb-RF算法提取特征波段作为输入可较好的降低模型复杂性、提高模型预测性能,各模型测试集的决定系数(R2P)和训练集的决定系数(R2C)均高于0.704 7。另外,在各算法提取特征波段进行建模时,GPR-P模型的R2CR2P均高于0.755 3,其中,采用fpb-RF方法提取的特征波段作为输入建立的GPR-P模型预测精度最高,R2CR2P分别为 0.781 5和0.779 6,RMSEC和RMSEP分别为0.904 1和0.928 3 mg·L-1,可为东北粳稻叶绿素含量的检测与评估提供有价值的参考和借鉴作用。  相似文献   

9.
土壤有机碳(SOC)对土壤肥力至关重要,可见-近红外光谱能对其实现快速反演,为区域监测和定量遥感提供基础。针对包络去除(CR)仅提供反射光谱的单向吸收特征,多元回归中预测信息缺失、拟合结果未充分反映波段特征,利用世界土壤数据库245份中国土样的可见-近红外光谱,首次提出双包络去除(BCR)与正交偏最小二乘(OPLS)结合的反演方法BCR-OPLS,同时纳入光谱反射率及上、下边包络去除量,讨论组分参考值偏态分布时幂函数或对数缩放在回归时的优化作用,建立多种土壤的综合与分类估计模型,并导出适用特定类型土壤的SOC指数。结果表明,对多种土壤有机碳含量反演,相较PLSR模型(决定系数R2和估计根均方误差RMSEE分别为0.69和0.45%),BCR-OPLS模型的预测能力明显改善(R2和RMSEE分别为0.9和0.26%);而对单一类型土壤的反演精度则进一步提升,根据载荷趋势和变量重要性建立的SOC指数,预测如黄色铁铝土的有机碳含量时(以400,590和920 nm),其反演结果R2达到0.94、RMSEE达到0.21%。双包络去除与OPLS相结合,增强了光谱特征诊断的鲁棒性,提高了不同类型土壤的综合与分类SOC全谱反演精度,基于直观的图谱表达可构建简单的波段预测关系,深化了物理经验吸收与统计多元回归之间的联系。  相似文献   

10.
基于分数阶微分算法的大豆冠层氮素含量估测研究   总被引:3,自引:0,他引:3  
氮素与作物的生长发育、产量和品质密切相关。作物冠层氮素含量的快速、准确、无损检测对于作物营养诊断和长势评估具有重要意义。传统的氮素检测方法检测周期长、操作复杂,同时具有破坏性,无法实现作物氮素含量在时间和空间上的连续动态监测。基于光谱遥感技术快速、无损地获取作物氮素含量是近年来作物组分快速检测研究的热点。当前的研究大多基于原始光谱或整数阶微分(一阶、二阶)预处理后的光谱进行氮素含量预测,原始光谱或整数阶微分预处理后的光谱会忽略光谱曲线间的渐变信息,影响氮素含量的预测准确度。与原始光谱和整数阶微分方法相比,分数阶微分算法在背景噪声去除、有效信息提取等方面较有优势。为研究分数阶微分预处理算法在作物氮素检测中的应用,本文以不同施肥处理下的盆栽大豆作物为研究对象,获取大豆苗期、花期、结荚期和鼓粒期四个生育期共256组冠层高光谱及对应的大豆冠层氮素含量(CNC)数据,运用分数阶微分算法对光谱数据进行0~2阶微分预处理,微分间隔为0.1,分别采用归一化光谱植被指数NDSI、比值光谱指数RSI对预处理后的光谱数据和大豆冠层氮素含量数据进行相关性分析,得到各阶微分预处理下NDSIα(α代表分数阶微分阶数)与大豆CNC,RSIα与大豆CNC相关系数绝对值的最大值及其对应的波段组合--最优波段组合NDSIα(opt)和RSIα(opt),采用线性回归方法,建立各阶微分下NDSIα(opt)与CNC,RSIα(opt)与CNC的预测模型,并与常用植被指数(VOGII, MTCI, DCNI, NDRE)建立的氮素含量预测模型进行比较,研究分数阶微分算法对大豆作物冠层氮素含量预测模型的效果。结果表明:(1)在0~2阶微分范围内,最优波段组合NDSIα(opt),RSIα(opt)与大豆CNC的相关系数随阶数增加呈现先升高后下降趋势。其中,0.8阶微分下NDSI0.8(R725, R769)与大豆CNC的相关系数最大,为0.875 9;0.7阶微分下RSI0.7(R548, R767)与大豆CNC的相关系数最大,为0.865 1;(2)分数阶微分预处理能够细化光谱数据中的有效信息,增强光谱数据对冠层氮素含量的敏感性,尤其是增强红边平台波段与氮素含量的正相关性及绿波段与氮含量的负相关性;(3)与整数阶微分、常用植被指数相比,分数阶微分能够提高大豆CNC预测模型的准确性。其中,基于0.7阶微分RSI0.7(R548, R767)建立的大豆CNC预测模型与0阶微分RSI0(R725, R769)相比建模集决定系数(R2C)和预测集决定系数(R2P)分别提高了0.061 9和0.016 6,建模集均方根误差(RMSEC)和预测集均方根误差(RMSEP)分别降低了0.552 5和0.180 9,预测相对偏差(RPD)提高了0.110 4。基于0.7阶微分RSI0.7(R548, R767)建立的大豆CNC预测模型与VOG II相比R2CR2P分别提高了0.086 6和0.025 5,RMSEC和RMSEP分别降低了0.757 5和0.248 3,RPD提高了0.146 88;(4)基于0.7阶微分比值光谱指数RSI(R548, R767)建立的大豆LNC预测模型较优,其R2C为0.748 4,R2P为0.800 3,RMSEC为4.752 9,RMSEP为3.511 1,RPD为2.253 7,能够较好的估测大豆冠层氮素含量。研究表明分数阶微分算法在大豆冠层氮素含量的定量预测中具有一定的优势,为光谱遥感技术在作物氮营养检测中的应用开拓了新的思路。  相似文献   

11.
潮滩沉积物水分的分布在空间和时间上会有很大的变化,含水量的变化会导致沉积物中生源要素含量的变化.因此,实时、准确、快速的监测潮滩沉积物含水量,对了解潮滩的各种特性,掌握潮滩生源要素信息,潮滩资源的开发有着重要意义.采集青岛市东大洋村潮间带的沉积物115份,分别测定新鲜样品、风干4周、风干8周样品的可见近红外光谱和含水量...  相似文献   

12.
滨海盐碱区土壤盐分的快速、准确监测对土地合理利用和保护具有重要意义。可见光近红外(Vis-NIR)光谱技术已广泛用于土壤属性的高效估测。然而,水分对含盐土壤光谱的干扰导致传统土壤盐分估测模型的精度降低。旨在探究分段直接标准化(PDS)和正交信号校正(OSC)在含水条件下土壤盐分估测中的应用,从而建立面向滨海盐碱区的“除水”Vis-NIR定量模型。为此,将获取的144份黄河三角洲滨海盐碱区表层(0~20 cm)土壤盐分数据划分为建模集(17个样本)和验证集(127个样本)。通过严格加水控制实验,测量10个含水率梯度(0%,1%,5%,10%,15%,20%,25%,30%,40%和50%)的建模集土壤光谱数据,验证集的土壤光谱则是根据生成的1~50随机整数,通过随机加水实验测量获取。采用PDS和OSC与偏最小二乘回归(PLSR)结合的建模策略,构建土壤盐分估测模型,并进行性能验证和比较。结果表明,OSC比PDS更能有效减轻水分在土壤盐分估测中的建模干扰。具体来说,光谱校正前后生成的所有PLSR模型均取得一定的成功(R2P=0.79~0.91,RMSEP=2.6~3.98 g·kg-1,RPD=1.98~2.37)。OSC-PLSR模型的土壤盐分估测精度提高,R2P,RMSEP和RPD分别为0.91和2.6 g·kg-1和2.37。而PDS-PLSR模型效果不理想,R2P,RMSEP和RPD分别为0.79,3.98 g·kg-1和1.98。模型整体表现出了OSC-PLSR>PLSR>PDS-PLSR的土壤盐分估测性能。此外,提出了变量投影重要性(VIP)和Spearman相关系数(r)结合的分析策略,进一步探究了模型的估测机理。模型的重要波长(VIP>1)与土壤盐分敏感波长(|r|>0.4)吻合,对估测模型有重要意义。比较而言,OSC-PLSR精确提炼了位于830,1 940和2 050 nm附近的模型估测的关键波长,而常规的PLSR和PDS-PLSR包含了大量的冗余信息。综合来看,OSC-PLSR模型在Vis-NIR土壤盐分估测中具有较好的除水效果,为土壤含水状态下的土壤盐分研究提供可靠方法。  相似文献   

13.
嫩度是猪肉食用品质最重要的指标之一。猪肉嫩度取决于猪肉组织复杂的物理、化学特性,目前难以实现快速无损伤检测。探索空间分辨光谱技术用于生鲜肉嫩度无损检测的可行性。首先利用点光源高光谱扫描系统采集54块猪肉背最长肌的空间可分辨散射光谱,经过感兴趣区域选择,提取出猪肉样本表面光斑的空间扩散轮廓,结合4-参数洛伦兹分布函数对扩散轮廓进行非线性拟合,拟合优度R2>0.992,并通过残差分析,表明4-参数洛伦兹分布函数符合肉样表面光强的空间散射规律,进而提取出480~950 nm波长下空间分辨光谱的四个形态学参数:渐进值a、峰值b、半带宽c以及半带宽处的斜率d。然后将单参数谱分别与猪肉样本Warner-Bratzler剪切力(WBSF)测量值进行偏最小二乘回归(PLSR)分析。结果表明不同参数谱都含有猪肉嫩度信息,其中峰值参数谱b建模效果最佳,其回归模型的校正集决定系数R2c为0.674,均方根误差SEC为8.396N,预测集决定系数R2p为0.610,均方根误差SEP为8.643N。为提高模型的预测精度和稳定性,实现多参数谱信息的融合,先通过PLSR分析,分别提取出每个参数谱中对猪肉嫩度方差贡献大的公共因子,然后将其因子得分组合在一起作为参数谱的特征变量,与猪肉样本WBSF测量值作多元统计回归分析。为避免数据冗余,对不同参数谱特征变量进行多重共线性判别,进一步采用PLSR算法对参数谱特征变量进行降维和变换,采用交叉验证方法,选择前两维因子得分进行校正模型的建立。其中所提取第一维公共因子对猪肉WBSF值方差解释率达92.28%。与单参数谱所建PLSR模型相比,多参数谱信息融合模型预测效果有了较大提高,其R2cR2p分别为0.923和0.800,SEC和SEP分别为4.083N和5.655N。通过对回归系数进行统计量t检验,结果表明所有回归系数极显著(p<0.01)。本研究通过采取多参数信息融合方法为空间分辨光谱在生鲜肉嫩度无损检测应用提供一种思路,该方法有效将空间分辨光谱解析为4个形态学参数,并实现不同参数谱信息的提取和融合,为开发基于空间分辨光谱的生鲜肉嫩度无损快速检测装备提供技术支撑。  相似文献   

14.
利用高光谱植被指数反演植被水分含量时,快速、准确的找到实测光谱数据与植被水分相关性最高的植被指数是研究的重点。在农田尺度上,以春小麦野外光谱数据与叶片含水量的定量关系为基础,通过灰色关联度分析,筛选出与叶片含水量灰色关联度较高的5种典型的水分植被指数,并建立了估算春小麦叶片含水量(LWC)的偏最小二乘回归(PLSR)模型和BP神经网络(back propagation artificial neural networks, BP ANN)模型。结果表明:(1)光谱一阶导数可以有效去除噪声影响并突出光谱特征信息,尤其是在750~830,1 000~1 060和2 056~2 155 nm等区间明显提高了与LWC的相关性。(2)灰色关联法能够较好的表征各水分植被指数与叶片含水量间的关联性,其中基于原始光谱建立的前5个水分植被指数都是两波段比值植被指数,基于光谱一阶导数建立的水分植被指数基本上都是两波段归一化差值植被指数。(3)所建立的两种模型中,基于光谱一阶导数建立的PLSR和BP神经网络模型R2分别为0.80和0.81,稳定性基本相同且都较好;两种模型RMSE都是0.55,RPD分别为2.01和1.41,说明PLSR模型的预测精度比BP神经网络模型高。从模型的验证效果来看,PLSR模型在估算春小麦叶片含水量方面有一定的优势,为高光谱定量反演春小麦叶片含水量提供一定的参考。  相似文献   

15.
多分类器融合提取土壤养分特征波长   总被引:2,自引:0,他引:2  
光谱已经应用于土壤养分速测的分析,但是如何寻找土壤光谱特征波段,尽最大可能避免无用信息干扰、保留有用信息,建立准确度高、预测效果好的模型仍是一个亟需解决的问题。以青岛三个不同地区土壤样品为例,测定土壤样品的紫外-可见-近红外光谱及其总碳(TC)、总氮(TN)、总磷(TP)含量;分别采用连续投影算法(SPA)、无信息变量消除法(UVE)、遗传算法(GA)、相关系数法(CC)四种算法(四种单分类器)对土壤光谱提取特征波长;再引入投票法和加权投票法的多分类器融合方法将四种算法融合得到特征波长;以偏最小二乘回归(PLSR)建立各土壤养分含量的模型,通过对模型效果的评价标准(建模集绝对系数R2c、校正均方根误差RMSEC、检验集绝对系数R2p、预测均方根误差RMSEP和相对分析误差RPD值)来判别各单分类器算法和多分类器融合算法对土壤养分含量特征波长的提取效果。分别对四种算法、筛选其中三种算法、最优二种算法进行融合,分析融合后模型效果和特征波长个数,结果表明:将四种单分类器经投票法融合后,其模型效果大部分不如单分类器,且相对好的模型特征波长个数较多;相较于投票法多分类器融合,四种单分类器经加权投票法融合模型效果有了一定的提高,TC和TN都能够在较少的波长中获得较好的预测效果,但仅TN经融合后,模型效果优于每个单分类器;TC,TN,TP分别在取SPA+UVE+GA,SPA+UVE+GA(或SPA+GA+CC)、SPA+UVE+GA三种单分类器进行加权投票法融合后,均能获得最优模型效果,且明显优于每个单分类器,模型效果有了显著提高;各土壤养分含量经两个最优单分类器加权投票法融合后,仍能得到好于最优单分类器的建模效果,TC和TP建模效果略差于三个单分类器融合结果,TN建模效果与三个单分类器融合结果相同。因此,在筛选三种算法融合,且其中包含最优两种算法的情况下,能够以较少的特征波长个数获得明显高于单分类器的建模效果。该方法为寻找土壤养分以及其他复杂物质成分的光谱特征波段提供了新方法,也为多种算法的综合运用提供了新思路。  相似文献   

16.
土壤光谱重建的湿地土壤有机质含量多光谱反演   总被引:4,自引:0,他引:4  
土壤有机质是湿地生态系统的重要元素,利用多光谱遥感技术可大尺度、快速获取其含量信息,对保护湿地生态系统具有重要意义。然而,由于不同地物光谱混合给多光谱数据带来光谱畸变,影响湿地土壤有机质含量的反演精度。为了消除不同地物光谱混合,实现湿地土壤有机质含量的准确、实时监测,以闽江鳝鱼滩湿地为研究区,利用线性波谱分解技术对原始影像的像元进行分解,重建土壤光谱,分析原始光谱、重建光谱与土壤有机质含量的相关性后,建立土壤有机质含量的反演模型。结果表明:利用线性波谱分解技术可有效消除原始影像中的植被端元,减少大部分道路及建筑物的反射干扰,重建后的土壤光谱特征曲线更趋近于自然状态下土壤的光谱曲线,重建效果显著;通过两种光谱与土壤有机质含量的相关系数对比,重建光谱更能准确的反映土壤光谱与土壤有机质含量的相关性;运用重建光谱构建土壤有机质含量的反演模型,其预测精度优于基于原始光谱的反演模型,R2F分别提高0.124和2.223,RMSE则降低0.106,1∶1线检验的预测值与实测值的拟合度更高,模型可行且有效。由此得出结论,利用线性波谱分解技术消除不同地物光谱混合,重建土壤光谱,一定程度上可实现在自然条件下湿地土壤有机质含量的大面积、准确检测,具有较好的实际应用价值。  相似文献   

17.
基于多变量统计分析的冬小麦长势高光谱估算研究   总被引:2,自引:0,他引:2  
利用高光谱分析技术实现冬小麦长势的准确、无损监测具有重要的实践意义。基于连续两年的氮素运筹试验,通过获取叶面积指数(LAI)、地上干生物量(AGDB)、地上鲜生物量(AGFB)、植株含水量(PWC)、叶绿素密度(CH.D)和氮素积累量(ANC)六个冬小麦长势指标及冬小麦冠层高光谱,引入主成分分析法(PCA)构建可表征冬小麦长势的综合长势指标(CGI),并结合偏最小二乘回归法(PLSR)构建CGI的高光谱估测模型。结果表明,除植株含水量外,其他长势指标与所构建的CGI都达到极显著水平,表明利用CGI可以表征各长势指标信息。对比CGI和其他各长势指标的PLSR模型表现可知,CGI光谱监测模型表现最优(R2=0.802,RMSE=1.268,RPD=2.015),也具有较高的预测精度和稳健度(R2=0.672,RMSE=1.732,RPD=1.489)。表明基于PCA方法所构建的CGI可以表征冬小麦长势,利用PLSR方法可以实现对冬小麦长势的准确监测,且监测效果要优于单一的冬小麦长势指标。  相似文献   

18.
田间土壤属性复杂且随时间变化,快速精准地获得多种土壤理化指标数据对指导精细农业操作具有重要意义。为避免土壤水分带来的干扰,基于光谱技术的土壤成分含量预测需在土壤样本干燥的情况下进行光谱测量,然而土壤水分同样是指导农业生产的重要指标。为同时预测黑土区土壤有机质(SOM)、水分(SMC)、总铁(Fe)和pH值,提出测量湿土土壤样本的可见-近红外光谱,并采用标准正态变量变换(SNV)-连续小波变换(CWT)法分解光谱反射率,逐样本进行SNV后,以Mexh为小波基函数进行10个尺度(21,22,…,210)的分解,并与常用光谱处理方法进行对比,包括高斯滤波(GS)、一阶导数(FD)、连续统去除(CR),数学变换等7种方法。将74个样本数据划分为两组,其中50个作为建模集,24个作为验证集。经SNV-CWT变换后,每个尺度的小波系数与每个目标变量间置信度小于0.05的波段作为随机森林(RF)预测模型的输入变量,以各尺度验证模型精度为标准确定每个预测目标的最佳分解尺度;通过计算最佳尺度小波系数与土壤成分间的皮尔森相关系数(PCC),基于模型的相关系数(MBC)和灰色关联度(GRD),判断各属性的特征波段,且分别以三种相关系数作为指标,以过滤式筛选法建立不同属性的RF估测模型。结果表明:与7种常用的处理方法相比,SNV-CWT分解后四种土壤成分的预测精度均有提高,SOM,SMC,Fe和pH对应的最佳分解尺度分别为7,8,1和10。在以多维特征作为输入变量的情况下,SOM与SMC的验证模型决定系数(R2)即可达到0.90和0.93。三种分析方法中以MBC计算的相关系数为波段筛选指标建立的模型精度最佳,其中SOM与SMC的R2均为0.94,且Fe(R2=0.67,Mse=0.01%,RPD=1.76)与pH(R2=0.80,Mse=0.1,RPD=2.24)的模型精度具有大幅度提高,可应用于多种土壤理化指标数据的提取与监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号