首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
近年来,市场上出现了一类利用新型无机结合剂处理的绿松石,经此类方法处理的绿松石与天然绿松石极为相似,普遍表现为结构细腻、呈现玻璃-蜡状光泽,行业上称之为“加瓷”处理绿松石(简称“加瓷”绿松石)。采取常规宝石学仪器、红外吸收光谱仪、紫外-可见分光光度计以及能谱色散型X射线荧光光谱仪对“加瓷”绿松石的宝石学性质、振动光谱特征以及化学成分组成特征进行了系统的研究和分析。研究结果显示:“加瓷”绿松石样品的密度大都小于2.200 g·cm-3,与处理前密度有关,故用于“加瓷”处理的样品以密度较低的绿松石为主;“加瓷”绿松石均表现为典型的低密度、较细腻的结构外观和蜡状-玻璃光泽的组合特征,与品质相当的天然绿松石特征不一致,可作为“加瓷”绿松石重要的辅助性鉴别特征。“加瓷”绿松石在长、短波紫外荧光下的发光性与天然绿松石近于一致;显微观察下铁线、裂隙凹陷处常出现白色融出物,孔道内可见毛发状结晶体。“加瓷”绿松石的主要化学成分与天然类似,以CuO,Al2O3和P2O5为主,并含有一定量的FeOT(铁的氧化物),ZnO、SiO2,K2O和CaO。其中,“加瓷”处理绿松石样品中SiO2含量基本在6.40%以上,均高于天然绿松石中的SiO2含量(1.96%~6.25%),而Al2O3和P2O5含量都较天然绿松石偏低,磷铝比例基本与天然绿松石一致,为1.10左右。利用“加瓷”绿松石较高的SiO2含量和表面特征可将其与天然绿松石进行有效鉴别。“加瓷”绿松石与天然绿松石的红外吸收光谱特征基本一致。“加瓷”绿松石的UV-Vis光谱表现为620~750 nm处的吸收峰以及425 nm附近处较为锐利的吸收峰,因颜色不同峰位稍有偏移,但总体与天然绿松石的UV-Vis光谱特征趋于一致。  相似文献   

2.
中国绿松石矿产资源丰富,是世界上主要的绿松石产出国家之一。绿松石作为一种名玉,以其独特的绿色及结构,深受人们的喜爱,也导致市场上出现了大量的优化处理品及仿制品。在旅游珠宝进一步发展的同时,打着“原产地”噱头的绿松石价格起伏非常大,对比同一地点的天然及仿制品玉石,在前人研究的基础上仍需要进一步积累数据。论文以中国湖北竹山秦古镇小巴寨750矿洞采集的天然绿松石与购买于湖北竹山县城珠宝市场的绿松石仿制品为研究对象,采用光学照片、场发射扫描电镜及能谱、红外和拉曼光谱等,从颜色、微形貌、微成分微结构的角度开展对比研究。研究结果表明,天然绿松石样品的颜色多样,呈“月白色-浅蓝色-蓝绿色-黄绿色-绿色-蓝色”的蓝绿色系列变化,晶体颗粒十分细小,呈微米级-纳米级,可见短柱状、层片状晶粒;绿松石仿制品颜色单一,常为较为呆板的绿色,多为散漫分布的颗粒状集合体,且颗粒多呈三方晶系、方解石型结构;天然绿松石主要成分为Al2O3 32.12%,P2O5 30.51%,CuO 10.75%,Fe2O3 5.57%等,为铜铝磷酸盐矿物。绿松石仿制品中主要元素组成为MgO 42.62%,Al2O3 2.66%,SiO2 2.66%等,其成分是以碳酸镁为主的菱镁矿;在红外光谱的对比研究中,天然绿松石样品的红外光谱图的3 083~3 509 cm-1区域,含有大量对应于ν(OH),ν(H2O)的红外吸收峰。绿松石仿制品在2 922 cm-1处有对应于νas (CH2)的红外吸收谱峰,该峰与其被染色有关。这些红外吸收峰也是区分天然绿松石与仿制品的有效指纹峰;在拉曼光谱图的对比研究中,天然绿松石样品的拉曼光谱图中往往具有分别对应于ν(OH),ν(H2O),ν(PO4)的散射峰~3 470,~3 270和~1 039 cm-1,而绿松石仿制品不存在此类拉曼散射峰,他们是区分天然绿松石及其仿制品的有效拉曼指纹峰。基于颜色、微成分、微结构及振动光谱可以有效区分同一地区天然绿松石与其仿制品。此类方法对于其他类型旅游珠宝与其仿制品的鉴定亦有重要的参考价值。  相似文献   

3.
“水波纹”绿松石是一种在外观上呈现水波纹状花纹图案的天然绿松石,产量稀少却深受消费者喜爱,前人对绿松石的研究较丰富,但对“水波纹”绿松石的研究较少。对一块基底呈浅蓝白色,条纹呈蓝绿色的“水波纹”绿松石样品用显微激光拉曼光谱仪、显微红外光谱仪、微区X射线衍射、激光剥蚀电感耦合等离子体质谱仪、扫描电镜、显微紫外-可见-近红外光谱仪等测试其各种性能。结果表明,条纹区与非条纹区的主要矿物均为绿松石;红外光谱和拉曼光谱均显示绿松石的光谱;条纹区与非条纹区的化学成分不同,条纹区Al2O3,SiO2,MgO,V,Co,Ni,U及Y,Mo,Cd的含量较非条纹区含量高,而非条纹区P2O5,CuO,K2O及Na2O的含量较条纹区含量高;扫描电镜微形貌显示,条带区的晶体多为厚板状、晶体颗粒大、排列紧密,几乎不可见孔隙,非条带区的晶体多为大小不一的柱状、碎片状,杂乱排列,可见孔隙;微区X射线衍射表明条带区的结晶度较非条带区的结晶度高;显微紫外-可见-近红外光谱表明条带区与非条带区的致色离子相同,均在426和660 nm处有可见吸收峰,致色离子均为Fe3+和Cu2+。“水波纹”绿松石样品的谱学特征表明,条纹处与非条纹处的颜色差异与致色离子没有明显关系,而颜色及透明度差异与绿松石的结晶程度、致密程度有主要关系,“水波纹”绿松石中绿松石结晶度的变化表明了绿松石形成环境的不稳定性,结晶度的周期性变化表明了形成绿松石的外界环境具有周期性变化的规律,为研究绿松石的颜色成因及绿松石的成矿环境提供数据支撑。  相似文献   

4.
“黑青”指颜色近黑色,主要成分为透闪石的青玉。“黑碧”指颜色近黑色,主要成分为阳起石的碧玉。采用电子探针、激光剥蚀电感耦合等离子体质谱仪和红外光谱测试分析手段,确定“黑青”“黑碧”的矿物种属。采用拉曼光谱、显微紫外-可见分光光度计、红外光谱对“黑青”“黑碧”的谱学鉴别特征进行探究。“黑青”为标准透闪石拉曼谱峰,“黑碧”的谱峰位置与“黑青”存在几个波数的偏差,向波数小的方向移动。可见-近红外波段,“黑青”出现445 nm吸收峰,680和940 nm宽吸收带,为Fe2+和Fe3+作用;“黑碧”出现445 nm吸收峰,660和690 nm双吸收峰以及970 nm吸收峰,为Fe2+,Fe3+,Cr3+作用。显微紫外-可见光谱可分析到样品的近红外区,“黑青”在1 397,2 310,2 387和2 466 nm出现强吸收峰,1 915和2 120 nm出现弱吸收峰;“黑碧”在1 400,2 313和2 394 nm出现吸收峰。红外光谱分析“黑青”在5 225,4 738,4 692,5 349,4 317,4 190和4 064 cm-1存在吸收峰;“黑碧”在4 708,4 307,4 178和4 031 cm-1存在吸收峰。显微紫外-可见光谱与红外光谱分析结果虽然存在小的差异,但基本保持一致,以红外光谱分析结果为准。将透闪石质的“黑青”、阳起石质的“黑碧”、广西大化阳起石质玉进行对比,综合红外光谱和显微紫外-可见光谱分析结果得出“黑青”(透闪石)与“黑碧”(阳起石)近红外光谱的鉴别特征:“黑青”(透闪石)在4 800~4 600 cm-1存在两个吸收峰,4 350~4 300 cm-1存在分裂双吸收峰;“黑碧”(阳起石)在4 800~4 600 cm-1存在一个弱吸收峰,4 350~4 300 cm-1存在一个吸收单峰。且“黑碧”(阳起石)的近红外吸收峰相较于“黑青”(透闪石)整体向低波数方向移动。  相似文献   

5.
湖北与安徽产高品质绿松石的红外与拉曼光谱特征及意义   总被引:1,自引:0,他引:1  
近年来,市场对高品质绿松石的产地识别需求愈加迫切,然而,相应的研究尚少。湖北秦古、文峰和安徽笔架山产有结构致密细腻、光洁坚韧,蓝色的绿松石。它们的谱学特征基本一致,但在峰位或强度上存在可以识别的差异。红外光谱特征中,由δ(OH)弯曲振动引起的783 cm-1附近谱带在秦古样品中表现为797和779 cm-1分裂峰,在文峰样品中表现为787 cm-1峰,在笔架山样品中表现为783 cm-1峰。不同产地的R=I783 cm-1/I837 cm-1值不同,秦古样品R值在0.98以上,文峰样品R值在0.85左右,笔架山样品R值集中在0.91~0.94。属于ν4(PO4)伸缩振动内的609 cm-1附近谱带在文峰样品中较明显且强度大,在秦古样品中峰形略宽、强度稍弱,笔架山样品在该处吸收平缓且强度很小。拉曼光谱中在3 500 cm-1附近笔架山样品的峰位波数明显较湖北秦古和文峰样品的大(为3 506和3 505 cm-1),而湖北所有样品的此峰均低于3 500 cm-1(3 495~3 500 cm-1),可能由水组分的不同造成的,且其在3 472 cm-1附近的峰强度明显偏大。同样情况发生在由ν4(PO4)弯曲振动引起的551 cm-1峰,可能为微量元素Zn的含量差别所致。以上特征可作为识别湖北和安徽两产地绿松石的重要谱学标志,结合其外观特征,可以将二者有效区分。以上研究结果还具有潜在的考古学价值。  相似文献   

6.
绿松石的激光拉曼光谱研究   总被引:1,自引:0,他引:1  
对湖北、安徽地区绿松石进行了激光拉曼光谱测试分析。结果表明,绿松石中H2O,OH-及PO3-4的基团振动是导致其激光拉曼光谱形成的主要原因。3 510~3 440 cm-1的谱峰是由ν(OH)伸缩振动所致,其中ν(OH)振动导致的强拉曼特征谱峰在3 470 cm-1附近,ν(H2O)伸缩振动致拉曼谱峰位于3 290~3 070 cm-1附近的较为宽缓的弱谱峰处;由ν3(PO4)伸缩振动致强拉曼特征谱峰在1 200~1 030 cm-1之间,其中ν3(PO4)振动导致的强拉曼特征谱峰在1 039 cm-1附近,ν4(PO4)弯曲振动位于650~540 cm-1范围,ν2(PO4)的弯曲振动谱峰位于500~410 cm-1处;不同产地、不同结晶类型的绿松石表现出的拉曼谱峰特征基本一致。  相似文献   

7.
近期在广州荔湾珠宝市场出现一种具黄、黑条带的玉石品种,因其花纹形如黄蜂,商家称之为“黄蜂石”。“黄蜂石”的条纹状结构与缟玛瑙的条带状纹理非常相似,容易混淆。对“黄蜂石”进行显微岩相学、X射线粉晶衍射、电子探针、红外吸收光谱及拉曼光谱等分析,旨在探求其基本物理性质、矿物组成,以及谱学特征。结果显示:“黄蜂石”以灰白、黄橙、黑色为主,莫氏硬度3~5,相对密度2.58~2.73,长波紫外光下具弱黄色荧光,与稀盐酸反应起泡。显微岩相学分析显示,“黄蜂石”基质为方解石,呈不规则粒状,粒径0.02~0.3 mm,粒状、纤维状结构。“黄蜂石”中CaO的含量约为53.64%~56.66%,FeO的含量约为2.23%~3.62%,MgO的含量约为1.05%~1.79%,部分测试点中出现As和S元素。样品中Mg/Ca摩尔百分比为2.59%~4.68%,为低镁方解石。红外吸收光谱分析显示,“黄蜂石”的红外光谱特征吸收峰与碳酸盐类矿物理论值一致,为1 514,1 427,881和710 cm-1,由[CO3]2-不对称伸缩振动、面内弯曲振动以及面外弯曲振动导致;黑色矿物中存在黄铁矿的特征峰1 123,1 050,423,1 123和1 050 cm-1为S-S伸缩振动,423 cm-1为Fe2+-[S2]2-伸缩振动。拉曼光谱分析显示,样品的黄色部分中除具方解石的拉曼位移1 083,713,282和157 cm-1外,还有副雄黄的拉曼峰346,233和184 cm-1;橙红色部分显示雄黄的拉曼特征峰338,221及184 cm-1,338 cm-1由S-As-S伸缩振动所致,221 cm-1属于S-As-S弯曲振动结合As-S伸缩振动产生,184 cm-1与As-As伸缩振动相匹配。X射线粉晶衍射分析结果与红外吸收光谱、拉曼光谱等测试结果一致,即“黄蜂石”的主要矿物是方解石,次要矿物为黄铁矿、雄黄及副雄黄等,根据国家标准可定名为“碳酸盐质玉”。  相似文献   

8.
“黑碧”指颜色为黑色,主要成分为阳起石的碧玉。电子探针、激光剥蚀电感耦合等离子体质谱仪分析显示“黑碧”为阳起石碧玉。拉曼光谱和红外光谱的OH振动处产生3个主峰,归属于MgMgMg-OH,MgMgFe2+-OH(Fe2+M1MgM1MgM3-OH,MgM1MgM1Fe2+M3-OH),MgFe2+Fe2+-OH(MgM1Fe2+ M1Fe2+M3-OH,Fe2+M1Fe2+M1MgM3-OH),但与常见和田玉不同,“黑碧”的三个主峰在拉曼光谱OH的振动区(3 600~3 700 cm-1)和红外光谱OH的倍频振动区(7 200~7 100 cm-1)产生分裂现象。将“黑碧”分为5个区域:HB-1,HB-2,HB-3,HB-4和HB-5,进行原位的电子探针和拉曼光谱分析,拉曼光谱在3 600~3 700 cm-1出现3个主峰(A,B,C),将主峰进行分峰拟合处理,显示分裂成6个次级峰(A′和A″,B′和B″,C′和C″),次级峰之间的平均波数差为5 cm-1。前人对角闪石在OH振动处主峰分裂现象的观点各不相同。结合“黑碧”的原位电子探针数据和相关研究文献,认为角闪石中B(M4)位置上的阳离子分布是分裂谱产生的主要原因。角闪石中的B(M4)位置虽然没有直接与W位置的OH相连接,但B(M4)位置上的阳离子通过影响TO4上的桥氧,间接影响W位置上的OH,从而引起OH振动光谱产生一定变化。对比存在类似分裂谱的角闪石样品和“黑碧”的晶体化学式,发现所有的样品在B(M4)位置上均存在Ca2+和Mn2+分布,而其他位置的阳离子占位情况都不相同,表明“黑碧”OH振动光谱产生分裂与B(M4)位置上的Ca2+和Mn2+分布有关。故认为“黑碧”中OH振动光谱产生分裂原因为Ca2+和Mn2+在B(M4)位置上的占位,且高波数峰位归属于Ca2+,低波数峰位归属于Mn2+,即A′,B,C′归属于Ca2+,A″,B″,C″归属于Mn2+。  相似文献   

9.
研究对象是一种与“冻地”鸡血石外观高度相似的玉石,该种玉石半透明“地”中含有橙红色矿物。利用X射线粉晶衍射仪、扫描电子显微镜、红外光谱仪、拉曼光谱仪对该玉石的宝石学及谱学特征进行研究。结果表明:该玉石“地”的主要组成矿物为有序度较高的地开石、橙红色矿物为雄黄;地开石晶体为自形假六边形片状,约15~20 μm,厚2~4 μm,粒径均一且形态一致,集合体在三维空间无序排列;部分样品“地”中含有少量黄铁矿、萤石、石英、方解石等矿物。“地”的红外光谱指纹区具有高岭石族矿物的主要特征峰,分别位于430,470,540,698,755,795,913,937,1 002,1 034和1 118 cm-1;官能团区以3 622,3 653和3 706 cm-1处的吸收峰为特征,3 622 cm-1吸收峰由内羟基OH1的面内伸缩振动引起,3 653 cm-1归属于内表面羟基OH2和OH4的同相伸缩振动;从高频峰到低频峰强度依次增大,且内表面羟基OH3伸缩振动引起的吸收峰位于3 706 cm-1,表明“地”为有序地开石;拉曼光谱测试表明“血”为雄黄,具有186,222,235,273,346和355 cm-1的特征拉曼位移,其中186和222 cm-1归属于S-As-S的弯曲振动,346和355 cm-1由As-S的伸缩振动引起;拉曼光谱同样可用于“地”的矿物组成研究,低频区具有133,241,266,336,436,463,747,792和914 cm-1的高岭石族矿物的特征位移,高频区可见三个与红外光谱相似的阶梯状谱峰,3 624 cm-1强度最大,归属于OH1的伸缩振动,次强峰3 646 cm-1由OH2和OH4的同相伸缩振动引起,归属于OH3的伸缩振动峰强度最小且位于3 706 cm-1,高频区拉曼位移特点指示“地”为地开石,且有序度较高,与红外光谱测试结论一致。尽管研究样品的“地”与“冻地”鸡血石的主要组成矿物相同,为地开石,且具有外观细腻、温润等特点,但其“血”并非辰砂而是雄黄,所以不应与鸡血石混淆,其正确的珠宝玉石名称应为“粘土矿物质玉”。  相似文献   

10.
对来自坦桑尼亚Merelani地区的坦桑石样品,分别采用电子探针、EMXPLUS型ESR谱仪、同步热分析仪、紫外可见光谱仪以及傅里叶变换红外光谱仪进行了测试与分析。结果表明:坦桑石样品的主要成分为SiO2,Al2O3和CaO,微量成分中V2O5含量相对最多,平均含量为0.36%;坦桑石样品本身不含吸附水,结晶水, 加热至780 ℃附近时,脱失结构水,样品中结构水大约占总质量的2%;ESR实验结果中显示出明显Fe3+和Mn2+的电子顺磁信号;紫外-可见光谱显示,样品在385 nm处出现吸收窄带,575和750 nm处分别出现较为宽缓的吸收;红外光谱测试表明,样品在6 500~9 000 cm-1波段的倍频振动区,基本没有吸收。在4 000~6 500 cm-1波段主要为和频振动,5 956 cm-1附近呈较宽缓的吸收峰,5 413,5 184,4 336和4 046 cm-1处出现较尖锐的吸收峰,主要可能由O-H,矿物内的Si-O,以及空气里面的H2O分子和CO2振动所引起。综合EPMA以及ESR分析结果,蓝-紫色坦桑石颜色可能主要由V3+和V5+共同引起,Fe3+晶体场的d-d电子跃迁、Fe2+→Ti4+的电荷转移辅助致色。  相似文献   

11.
新疆哈密绿松石的矿物学和光谱学特征研究   总被引:1,自引:0,他引:1  
最近在新疆哈密发现了可规模开采的宝石级绿松石矿床。采用X射线粉晶衍射仪、激光剥蚀电感耦合等离子体质谱仪、扫描电子显微镜、傅里叶变换红外光谱仪、拉曼光谱仪、紫外-可见光谱仪等测试方法,对该地绿松石的化学成分、矿物组成、表面微形貌、红外吸收光谱、拉曼散射光谱、紫外-可见吸收光谱等矿物学和光谱学特征进行了系统对比研究。新疆哈密绿松石的主要化学成分以富Cr (1 617 ppm),V (435 ppm),Ti (428 ppm),贫Ba (99.9 ppm)为特征,随着Fe2O3/CuO比值的递减,绿松石的色调由绿变蓝。由磷酸根、羟基和结晶水引起的特征峰出现在该地绿松石的拉曼光谱和红外吸收光谱,其中磷酸根的振动峰位于1 000~1 200和420~650 cm-1,羟基的振动峰出现在3 400~3 600 cm-1,而结晶水引起的振动峰位于3 000~3 300 cm-1。此外,该地绿松石的紫外-可见吸收光谱显示,在600~700和430 nm处分别有由Cu2+和Fe3+引起的吸收峰,这两处的峰强与绿松石的蓝绿色调之间的关系,和新疆哈密绿松石成分中Fe2O3/CuO的比值与颜色之间的关系对应一致。  相似文献   

12.
朱振华  雷明凯 《物理学报》2006,55(9):4956-4961
采用溶胶-凝胶(sol-gel)工艺制备0.1 mol% Er3+掺杂Al2O3体系和SiO2-Al2O3复合体系粉末. 实验结果表明:5 mol%的SiO2复合加入Al2O3抑制γ→θ和θ→α相转变. 掺0.1 mol%Er3+:Al2O3体系粉末,900℃烧结,在1.47—1.63μm波段内光致发光(PL)谱为中心波长1.53 μm、半高宽56 nm的单一宽峰,1000—1200℃烧结,劈裂为多峰PL谱. 掺0.1 mol%Er3+:SiO2-Al2O3复合体系粉末,在高达1200℃烧结,仍保持中心波长1.53 μm的单一宽峰PL谱,由于—OH更完全的脱除,PL强度较900℃烧结Al2O3体系,SiO2-Al2O3复合体系均提高1个数量级. 关键词: 2-Al2O3复合体系')" href="#">SiO2-Al2O3复合体系 掺铒 溶胶-凝胶工艺 光致发光  相似文献   

13.
颗粒大、圆度高并具有浓郁颜色的淡水有核养殖珍珠(商贸名称为“爱迪生”珍珠)为珍珠市场提供了更高的品质与价值,然而受利益的驱使,染色的有核养殖珍珠也逐渐流入市场,扰乱了消费者的健康消费,在一定程度上阻碍了“爱迪生”珍珠产业的良性发展。本文利用红外光谱仪、紫外-可见分光光度计和光致发光光谱仪对养殖和染色“爱迪生”珍珠进行了系统的谱学研究,并将其与海水珍珠、染色海水珍珠进行了比较。结果表明:(1)染色与养殖“爱迪生”珍珠在红外光谱上均显示1 445,882和725 cm-1处的文石振动峰,其中染色“爱迪生”珍珠在3 800 cm-1处均出现宽缓的弱吸收峰;(2)染色“爱迪生”珍珠的紫外可见光光谱中280 nm处的吸收峰明显弱于养殖“爱迪生”珍珠,染色后的“爱迪生”珍珠整体反射率降低,可能与染剂使珍珠中的蛋白质分子受损有关。染黄色“爱迪生”珍珠缺失养殖橙黄色“爱迪生”珍珠在360~380 nm处的吸收峰,而与染色海水金珠430 nm处的强吸收峰相似。染黑色“爱迪生”珍珠在425 nm处有吸收峰,染色海水黑珍珠在480和645 nm处有吸收峰,养殖海水黑珍珠在702 nm处有吸收峰,三者图谱的差异可能为各自的染料不同所致;(3)养殖“爱迪生”珍珠在光致发光光谱中450~550 nm范围内可见一组吸收峰,染色“爱迪生”珍珠的发光中心向红区偏移且在650 nm附近出现强度不等的与染色剂相关的吸收峰,染色海水金珠也在600 nm处有和染色剂有关的吸收峰。  相似文献   

14.
近期在玉石市场上出现了一种名为“天青冻”的蓝色蛇纹石玉,为蛇纹石玉的一个新品种。采用偏光显微镜、扫描电子显微镜、激光剥蚀电感耦合等离子质谱仪和X射线粉晶衍射仪分析其结构特征、化学和矿物组成,并采用傅里叶变换红外光谱仪、激光拉曼光谱仪和紫外-可见分光光度计对其谱学特征进行研究。结果表明蛇纹石呈叶片状交织成毛毡状结构,并含有菱面体状的杂质矿物白云石。同时,X射线衍射谱2.53 Å(d202),1.56 Å(d062)和1.54 Å(d060)的特征衍射峰以及红外吸收光谱中3 673,997和641 cm-1的特征吸收峰表明其属叶蛇纹石,1 098和1 086 cm-1的特征拉曼峰指示了白云石和方解石的存在,这与其形成于SiO2热液交代白云岩的成矿环境相关。化学分析表明蓝色蛇纹石玉中的Fe元素含量较其他常见蛇纹石玉低。紫外可见吸收光谱中Fe2+→Fe3+电荷转移引起的强630 nm吸收带致其蓝色,Fe2+→Fe3+电荷转移引起的724 nm弱吸收带会导致其产生绿色调, 而由Fe2+和Fe3+自旋禁戒跃迁分别导致的537和488 nm弱吸收带对颜色影响较小。  相似文献   

15.
利用水热合成法,以柔性的乙二胺四乙酸(H4EDTA)为配体、氧化镨以及氯化镉为金属源合成了一种镨-镉异金属-有机配合物[Pr2Cd3(EDTA)3(H2O)11]·14H2O (1)。通过X射线单晶衍射确定化合物1的结构,该化合物属单斜晶系的C2空间群,a=16.154(3) Å,b=14.863(3) Å,c=14.875(3) Å,β=115.855(3)°,V=3214.2(9) Å3, Z=2,化合物1的结构中存在纳米尺寸大小的“心形”Pr6Cd6O12轮簇。其中Cd2+的配位数为7,采取单帽三棱柱的配位构型,而Pr3+采取十配位双帽四方反棱柱的构型。EDTA4-配体的四个羧基全部去质子化,与一个Cd2+和两个Pr3+配位,其中4个羧基氧原子和2个氮原子都与Cd2+配位,两个羧基分别桥连1个Pr3+。Pr3+和Cd2+通过μ2-O氧原子交替连接形成Pr6Cd6O12轮簇,每个Pr6Cd6O12轮簇与附近的6个Pr6Cd6O12轮簇共边连接,从而形成一个二维(6, 3)层状结构。二维层再通过…AAA…类型的堆积方式形成三维超分子结构。游离水分子填充在二维层空隙中,与羧基以及配位水分子之间形成比较强的O-H…O氢键,这些氢键有利于结构的稳定。通过热重分析、稳态荧光光谱、热微扰二维红外相关光谱(2D-IR COS)、固体紫外-可见漫反射光谱等手段进一步对化合物1的谱学性能进行表征。在红外光谱上,由于存在大量的氢键,化合物的红外光谱在3 680~2 640 cm-1波数范围内出现宽而强的吸收谱带。同时配体H4EDTA中的羧基脱去了质子氢,并且与金属离子发生配位,因此化合物1中羧基的C=O双键的伸缩振动吸收峰与未配位配体中的C=O双键的伸缩振动吸收峰相比,向低波数移动,在1 527 cm-1波数处出现吸收峰。固体荧光测试显示在325 nm的紫外光照射下,配合物1能发出强的360 nm左右的荧光,主要是由能量在Cd2+和EDTA4-之间发生明显的LMCT跃迁转移引起的,因此化合物1可作为一类潜在的发光材料。热微扰下的二维红外光谱显示,由于水分子与羧基及水分子之间存在氢键,使得O-H的伸缩振动吸收峰对热的微扰响应比较敏感。紫外-可见光谱测试显示化合物1在位于216 nm处出现很强的紫外吸收峰,归属于化合物1中EDTA4-配体的中n→σ*跃迁及π→π*,位于444, 468和484 nm的弱吸收峰,归属为Pr3+的f-f跃迁。  相似文献   

16.
绿松石常见蓝色、绿色和杂色等颜色,其中蓝色和绿色者因颜色鲜艳,价值最高,因此绿松石优化处理品也多为蓝色和绿色。利用有机树脂对质松色浅的绿松石进行充填处理(简称“有机充填”)是目前最主要的绿松石优化处理方式,常见浸胶和注胶两种处理类型。采用基础宝石学测试、红外吸收光谱仪、三维荧光光谱仪和X射线荧光光谱仪等测试技术分别对天然绿松石、浸胶和注胶充填处理绿松石的宝石学特征及谱学特征进行了系统的对比分析和研究。研究结果显示,天然绿松石紫外灯长波下具中等至弱荧光,荧光强度与色调和致密程度相关,浸胶绿松石长波荧光强于相同颜色天然绿松石,注胶绿松石长、短波下均具有中等至弱荧光。浸胶绿松石的红外吸收光谱显示,除绿松石本身特征峰外,还可见1 739 cm-1附近ν(C═O)吸收峰和2 926和2 851 cm-1亚甲基的吸收峰,注胶绿松石除羰基及亚甲基吸收峰更强外,还可见1 508 cm-1处苯环骨架特征吸收峰。三维荧光光谱测试显示,天然蓝色绿松石具有一个Ex为370 nm的中等强度特征荧光峰、半峰宽约为100 nm,绿色、杂色系和低致密度绿松石荧光极弱;蓝色浸胶绿松石具有Ex为380~400 nm内的强对称荧光特征峰,绿色浸胶绿松石可见一较强的荧光特征峰,半峰宽约为80 nm;蓝色注胶绿松石具有两个Ex分别为278和390 nm附近的较弱强度荧光特征峰,绿色注胶绿松石具有中等强度的荧光峰、半峰宽约为150 nm,荧光峰区域范围增大可能因为含有较多有机物。结合X射线荧光光谱仪分析Fe对绿松石的荧光会产生一定抑制作用。绿松石荧光特征和三维荧光光谱测试作为无损检测技术,具有测试简便、快捷、有效的特点,对准确鉴定绿松石和有机充填处理品具有重要的现实意义。  相似文献   

17.
产于印度尼西亚的紫色葡萄状玉髓,具有特殊的球粒状外观和浓郁的紫罗兰体色,其双面抛光片在反射光照射下为紫色,透射光下则为棕黄色,且颜色浓集于球粒中心。为探究其颜色成因,进行了偏光显微镜和扫描电子显微镜结构观察,显微紫外-可见光谱,热处理以及LA-ICP-MS原位成分分析。玉髓具有纤维状核心--粗粒石英外壳的特殊结构,粗粒石英外壳粒度500 μm左右,隐晶质部分则主要由粒度小于1 μm的形状不规则的SiO2颗粒组成。紫外-可见光谱显示紫色主要来源于540 nm左右的吸收峰,而黄色则由于谱线“左倾”产生的近紫外区及蓝光区强烈吸收所致。紫外-可见光谱使用塞尔迈耶尔方程修正表面反射误差、减去无吸收波段强度矫正仪器误差,并用最小二乘平滑扣除基线得到540 nm吸收峰的强度信息。计算玉髓在反射光下的紫色调及透射光下的黄色调的L*a*b*值和E*值定量表征颜色。热处理实验中,玉髓的紫色调在350 ℃左右开始褪去,紫外-可见光谱390和540 nm吸收峰消失,反射光和透射光下颜色差异减小,都呈现黄色调。随温度升高至400 ℃后,棕色调加深,出现478 nm左右的吸收峰。热处理过程中谱线吸收强度升高,“左倾”加剧,峰位“红移”。该现象与铁/二氧化硅纳米粒子(Fe/SiO2 NPs)生长过程中的谱形变化相似,有可能与玉髓内部与Fe有关的微细结构或包裹体在热处理过程中的变化有关。颜色参数结合原位成分分析,将数据采用标准分数(Z-score)归一化处理,比对紫色调的E*值与540 nm吸收峰强度及元素含量之间的关系,发现540 nm吸收峰强度可很好的反映紫色的浓集程度,但紫色调与过渡金属元素含量的线性相关性却并不显著,黄色调的E*值则与Fe元素含量具有近似的负相关性。Fe并不以杂质矿物的形式存在,元素含量这一因素也并不能完全决定玉髓的颜色,可能还受到Fe在玉髓中的存在形式,内部微细结构或包裹体等因素的影响。  相似文献   

18.
产于黑龙江的“北红玛瑙”与四川凉山、云南保山的“南红玛瑙”是我国珠宝市场上常见的红色玛瑙,然而相应的产地特征研究较少,结合色度学、拉曼光谱、X射线粉晶衍射分析对三个产地的73件红色玛瑙的色度学、矿物学、光谱学特征进行了对比分析。结果表明,“北红玛瑙”的主要物相组成为α-石英和斜硅石,次要矿物组成为针铁矿、赤铁矿;四川凉山与云南保山“南红玛瑙”的主要物相组成为α-石英,次要矿物为赤铁矿、针铁矿、方解石等,少量样品含有斜硅石。黑龙江“北红玛瑙”的颜色主波长范围为574~605 nm,集中于[580, 590]区间,对应黄色-橙黄色-橙色色调,CIE1976Lab色空间中a≤6.2,b≤6.3;四川凉山“南红玛瑙”的主波长范围为589~624 nm,云南保山“南红玛瑙”主波长范围为589~599 nm,两个产地的“南红玛瑙”主波长均集中于[590, 600]区间,对应橙色-橙红色色调,大部分样品a>6.2或b>6.3,整体而言相比“北红玛瑙”颜色色调偏红,其彩度和亮度总体上也高于“北红玛瑙”。拉曼光谱中,斜硅石Si-O-Si对称伸缩-弯曲振动引起的501 cm-1峰在“北红玛瑙”中的强度高,在两个产地的“南红玛瑙”中不存在或者强度弱。斜硅石与α-石英特征峰强度比(I501/I463)和面积比(A501/A463)结果基本一致,在研究及鉴定过程中可以根据实际情况灵活选择。拉曼光谱粉末法测得的斜硅石与α-石英特征峰强度比(I501/I463)和面积比(A501/A463)结果位于大量随机点测的范围内,在日常鉴定中可以用多次无损点测的方法来获得接近粉末法的结果。黑龙江“北红玛瑙”的特征峰面积比(A501/A463)稳定在0.15~0.36,而四川凉山与云南保山“南红玛瑙”稳定在0.00~0.08,指示了两个产地“南红玛瑙”的斜硅石相对含量比“北红玛瑙”少,推测是两地的“南红玛瑙”在初期形成后都经历了较强的脱水和重结晶作用过程,使斜硅石转化成低温的α-石英所致。可以综合利用色度学特征及拉曼光谱,结合斜硅石与α-石英谱特征峰强度比(I501/I463)或面积比(A501/A463),对产于黑龙江的“北红玛瑙”以及四川凉山、云南保山的“南红玛瑙”进行区分,这也对玛瑙的产地鉴定、出土文物溯源等具有重要意义。  相似文献   

19.
有机电致发光材料具有主动发光、视角广、对比度高等显著特点。稀土有机配合物电致发光材料目前备受广大研究者的关注。以水杨醛和苯甲酸衍生物为原料,经酯化、肼化及希夫碱缩合合成了水杨醛对甲氧基苯甲酰腙(1-H2L)、水杨醛对甲基苯甲酰腙(2-H2L)、水杨醛对溴基苯甲酰腙(3-H2L) 3种配体,以Pr(NO3)3为原料,合成了水杨醛酰腙系列镨稀土配合物,经红外光谱、紫外光谱等分析手段对该类配合物的结构进行表征,配体在3 136~3 141 cm-1出现羟基ν(OH)伸缩振动峰,在配合物的红外光谱中消失,配合物在3 330~3 368 cm-1之间的吸收峰归属为结晶的H2O的ν(O-H)羟基弯曲振动吸收峰,配合物在与配体对应的3 140 cm-1均不出现羟基吸收峰,三种配体及配合物的吸收波形相似,反映出配体及配合物的结构基本一致,但配体与配合物的吸收波峰相差较大,据此可推测配体已经配位。采用荧光分光光度计测定了该类配合物的荧光光谱,并讨论了配体取代基的变化对荧光强度的影响。配体分别在352,369,365和417 nm波长监测下,于517 nm处出现发射峰。其中3-H2L的荧光强度最高。配合物均在470 nm的蓝光激发下,分别于608和617 nm出现镨的电偶极跃迁特征发射峰,归属于3P03F2跃迁。配合物均可被470 nm蓝光激发,在608~617 nm处有较好的红光发射,该类荧光粉有望应用于OLED上进行应用。  相似文献   

20.
水体中砷的去除与其水化作用密切相关,而不同质子化砷和砷酸铁水化特征相关报道甚少,且缺乏不同质子化砷和砷酸铁水化层红外光谱解析。在B3LYP/6-311G(d, p)计算水平上比较不同质子化砷酸根[HmAsO4]m-3(m=0~2)和铁-砷酸盐络合物种[FeHmAsO4]m+(m=0-2)水化能,利用约化密度梯度函数图形化分析其与水分子相互作用的强度、类型和位置,并解析不同质子化砷酸根和砷酸铁水化层红外光谱特征。结果表明,随着氢质子化,砷酸根[HmAsO4]m-3(m=0~2)水化能力减弱,而铁-砷酸盐络合物种[FeHmAsO4]m+(m=0~2)水化能力随着氢质子化增强。当水分子中1个氢与[HmAsO4]m-3(m=0~2)中1个氧相互作用时倾向形成氢键;而水分子中2个氢同时分别与[HmAsO4]m-3(m=0~2)中两个氧相互作用时,相互作用变弱,以范德华力相互作用;水分子通过其氢与砷酸根中氧形成的氢键强于水分子通过其氧与质子化砷酸根中氢形成的氢键。未质子化ON倾向与2~4个水分子形成氢键,而质子化OP最多与2个水分子形成氢键且OP…HW氢键弱于ON…HW氢键。红外光谱中,2 954,3 114,3 179,3 252和3 297 cm-1是AsO3-4第一水化层中水分子Ow-Hw伸缩振动峰,3 277,3 324和3 376 cm-1是HAsO2-4第一水化层中水分子的Ow-Hw伸缩振动峰,3 189,3 277,3 306和3 383 cm-1是H2AsO-4第一水化层中水分子Ow-Hw伸缩振动峰;[FeHmAsO4]m+(m=0~2)第一水化层中水分子Ow-Hw伸缩振动对应区域依次是2 500~3 060,2 660~3 200和2 900~3 360 cm-1。因此,随质子化,[HmAsO4]m-3(m=0~2)和[FeHmAsO4]m+(m=0~2)第一水化层中水分子的Ow-Hw伸缩振动峰蓝移;相对于[HmAsO4]m-3(m=0~2),[FeHmAsO4]m+(m=0~2)第一水化层水分子的弯曲振动峰和伸缩振动峰都明显红移。[FeHmAsO4]m+(m=0~2)第一水壳层形成Fe-Ow-Hw…Ow-Hw…ON-As氢键桥,该氢键桥中Ow-Hw具有特殊吸收峰,伸缩振动峰依次位于2 195,2 526和2 673 cm-1,质子化导致明显蓝移但峰强度几乎无变化;而其弯曲振动峰随质子化红移且强度明显降低;独立OP-H伸缩振动峰不受Fe络合影响,而OP-H…Ow中OP-H伸缩振动峰位置因Fe络合而发生明显蓝移。该研究有助于更好地解析不同PH下砷和砷酸铁在水中溶解性,可用于红外光谱监测水溶液中砷和砷酸铁水化特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号