共查询到17条相似文献,搜索用时 62 毫秒
1.
基于 PROSPECT模型的蔬菜叶片叶绿素含量和SPAD值反演 总被引:1,自引:0,他引:1
叶绿素含量是衡量植物营养和病虫害发生情况的重要指标。传统的分光光度法对植物叶片破坏性较大且无法实时、快速、无损地获取叶绿素含量。新兴的利用叶绿素仪测量叶绿素相对含量(以下简称SPAD值)的方法不能定量获取实际含量。光学辐射传输模型PROSPECT从生物物理、化学的角度以及能量传输的过程出发,定量描述了叶片色素、水分、结构参数等对叶片反射光谱的影响。因此,提出利用PROSPECT模型同时反演蔬菜叶片叶绿素含量和SPAD值,实时、快速、无损、定量获取植物叶片叶绿素的含量。第一,多次测量三种蔬菜叶片的反射光谱,并用叶绿素仪测量SPAD值。然后,预处理光谱数据,获得平均反射率光谱。第二,以欧式距离为评价函数,利用PROSPECT模型对实测反射率光谱进行拟合。拟合过程中三种蔬菜欧式距离最大为0.008 9,最小为0.006 4,平均为0.007 5,表明该模型能够很好地拟合蔬菜叶片的反射率光谱。第三,根据拟合结果,反演叶绿素含量和透射率光谱,再根据透射率光谱获取叶片在940和650 nm波长处的光透过率,计算叶片的反演SPAD值。第四,建立反演叶绿素含量、反演SPAD值与实测SPAD值的关系模型。结果表明: (1)利用该模型反演得到的叶绿素含量值与实测SPAD值有较好的线性关系, 其关系模型为:y=1.463 3x+16.374 3,两者相关系数为0.927 1,模型的决定系数为0.862,均方根误差为2.11;(2)利用该模型反演得到的SPAD值与实测SPAD值之间线性关系较好,其关系模型为:y=0.986 9x-0.668 3,两者相关系数为0.845 1, 模型的决定系数为0.714 3,均方根误差为3.380 2。研究表明,通过测量植物叶片的反射率光谱,利用PROSPECT模型可以无损、定量地获取蔬菜叶片的叶绿素含量和SPAD值。该方法可推广至其他植物的叶绿素测量和实时监测,为变量施肥、精准种植提供可靠的数据支持。研究结果对蔬菜生长态势的无损监测具有重要的意义。 相似文献
2.
光谱指数的植物叶片叶绿素含量估算模型 总被引:4,自引:0,他引:4
叶片叶绿素能够有效监测植被的生长状况,利用光谱指数反演植被叶绿素含量是目前的通用方法。实测了盐生植物光谱反射率和叶片叶绿素含量。对SPAD值进行变换,对比Pearson与VIP方法探讨盐生植被叶片叶绿素含量与植被指数的相关性并进行精度验证,从中选出最佳拟合模型。研究表明,通过对Pearson与VIP相关性分析,最终选定VIP方法建立植被指数的叶片叶绿素估算模型,NDVI705,ARVI,CIred edge,PRI,VARI,PSRI和NPCI的VIP值均大于0.8,因此选定这七个植被指数为最优植被指数;预测结果显示,所有模型的相关性都在0.7以上,预测值与实测值相关性最好的是经过倒数变换的SPAD值,R=0.816,RMSE=0.007。基于VIP方法的反演模型能较好地估算研究区植被叶绿素含量,该方法为植物叶绿素含量诊断的实际应用提供了重要的理论依据和技术支持。 相似文献
3.
苹果树叶片叶绿素含量高光谱估测模型研究 总被引:12,自引:0,他引:12
叶片叶绿素含量是评估果树长势和产量的重要参数,实现快速、无损、精确的叶绿素含量估测具有重要意义。本研究以山东农业大学苹果园为试验区,采用高光谱分析技术探索苹果树叶片叶绿素含量的估测方法。通过分析叶片高光谱曲线特征,对原始光谱分别进行一阶微分、红边位置以及叶面叶绿素指数(LCI)变换,分别将其与叶绿素含量进行相关分析及回归分析,建立叶绿素含量估测模型并进行检验,从中筛选出精度最高的模型。结果显示,以LCI为变量的估测模型以及以一阶微分521和523nm组合为变量的估测模型拟合精度最高,决定系数R2分别为0.845和0.839,均方根误差RMSE分别为2.961和2.719,相对误差RE%分别为4.71%和4.70%。因此LCI及一阶微分是估测苹果树叶片叶绿素含量的重要指标。该模型对指导苹果树栽培生产具有积极意义。 相似文献
4.
应用近地成像高光谱估算玉米叶绿素含量 总被引:7,自引:0,他引:7
图谱合一的近地成像高光谱是现代数字农业对田块尺度的作物长势信息进行动态临测和实时臀理的需要,是促进农业定量遥感发展的重要手段之一.文章通过自主研制的田间扫描成像光谱仪近地获得盆栽和大田玉米的冠层高光谱影像,从影像中精确提取玉米不同层位的叶片反射光谱并计算TCARI,OSA-VI,CARI,NDVI等多种光谱植被指数.构... 相似文献
5.
6.
利用高光谱扫描技术检测小麦叶片叶绿素含量 总被引:4,自引:0,他引:4
利用高光谱扫描技术对小麦叶片进行无损检测试验,探索精确测定小麦叶绿素含量的方法,为农作物生长状况、植物病理诊断等提供科学依据。研究选取90个样本作为校正集,30个样本作为预测集,获取叶片的高光谱反射图像,同时用传统的分光光度计方法测定其叶绿素含量。选取波长491~887 nm范围光谱,用多元散射校正、一阶导数、二阶导数3种方法处理,利用偏最小二乘法和逐步线性回归法分别建立了小麦叶片叶绿素含量与光谱信号间的数学模型。研究发现多元散射校正(MSC)结合二阶导数光谱的多元线性回归(SMLR)模型的效果较优,模型校正集和预测集决定系数分别为0.82和0.79,校正均方根误差和预测均方根误差分别为0.69和0.71。研究结果表明可以利用高光谱扫描技术检测小麦叶片叶绿素含量。 相似文献
7.
丁香叶片叶绿素含量偏振高光谱数学模型反演研究 总被引:4,自引:0,他引:4
在测量叶绿素含量的同时,使用二向反射光度计、USB2000高光潜仪和偏振装置,定量测量与计算丁香叶片高光谱偏振信息,并建立偏振信息-叶绿素含量回归模型.结果表明:当0°偏振时,叶绿素的含量与其偏振反射比的回归模型为y=4.506 4e-0.0568x,复相关指数R2=0.895 8;90°偏振时,叶绿素的含量与其偏振反射比的回归模型为y=145.79X-0.2041,复相关指数为R2=0.479 8;50°入射角时,叶绿素的含量与其偏振度的回归模型为y=7 206.7X6-20 160X5+22 547X4-12 788X5+3 822.4X2-553.72X+30.429,复相关指数为R2=0.646 4;对以上模型进行F检验,发现模型中的偏振信息和叶绿素含量之间存在显著的函数火系,为植被遥感监测和应用提供了理论基础. 相似文献
8.
为了提高马铃薯叶绿素含量估算模型的精度,使用无人机平台搭载多光谱相机,获取对照处理和干旱处理下马铃薯关键生育期的遥感影像,选取13种植被指数作为叶绿素含量反演模型的输入变量,使用多元线性回归(MLR)、支持向量回归(SVR)、随机森林回归(RFR)、决策树回归(DTR)构建马铃薯叶绿素含量估算模型。首先分析了植被指数与叶绿素含量之间的相关性,结果表明,在对照处理块茎形成期,CIre、 GNDVI、 NDVIre、 NDWI、 GRVI、 LCI与叶绿素含量之间的相关系数绝对值在0.5以上,且存在显著(p<0.05)或极显著(p<0.01)相关性;在马铃薯其他生育时期,13种植被指数与叶绿素含量之间的相关系数绝对值均在0.5以上,且存在极显著(p<0.001)相关性。然后对MLR、 SVR、 RFR和DTR等模型的精度进行比较,结果表明:SVR模型在对照处理块茎形成期、块茎膨大期和淀粉积累期的预测效果均是最佳,R2和RMSE在块茎形成期为0.89和2.11,块茎膨大期为0.59和4.03,淀粉积累期为0.80和3.18; RFR模型在干旱处理块茎形... 相似文献
9.
基于PROSPECT+SAIL模型的森林冠层叶绿素含量反演 总被引:6,自引:0,他引:6
森林冠层叶绿素含量直接反映着森林的健康和胁迫情况。叶绿素含量的准确估测,更是研究森林生态系统循环模型的关键。文章以PROSPECT+SAIL模型为基础,从物理机理角度反演森林冠层叶绿素含量。首先利用PROSPECT和SAIL模型模拟叶片水平和冠层水平的光谱,并建立叶片水平叶绿素含量的查找表反演叶片叶绿素含量,然后结合森林结构参数Leaf Area Index(LAI)实现叶片尺度与冠层尺度叶绿素含量的转化,从Hyperion影像反演研究区域冠层水平叶绿素含量。结果表明,叶绿素含量的主要影响波段为400~900nm;PROSPECT模型模拟的叶片光谱和SAIL模型模拟的冠层光谱均与实测光谱拟合效果较好,相对误差分别为7.06%,16.49%;LAI反演结果的均方根误差RMSE=0.5426;利用PROSPECT+SAIL模型可以较好地反演森林冠层叶绿素含量,反演精度为77.02%。 相似文献
10.
叶绿素含量高低反映植物健康状况,研究景区树种叶片叶绿素绝对值(SPAD)不同的光谱变化规律能为叶绿素高光谱监测波段识别与景区树种管理提供理论支撑。从琅琊山景区灌木和乔木类选取9个常见树种,探讨相同树种叶片SPAD值变化时的光谱差异,同时,横向对比相同SPAD值不同树种叶片的光谱特征,并深入分析不同树种叶片SPAD值与单波段原始光谱、光谱倒数、一阶微分、二阶微分及波段组合差值指数、归一化指数、比值指数、一阶微分归一化指数、一阶微分比值指数之间的关系。结果表明:9个所测树种叶片随着叶绿素SPAD值的升高,光谱变化规律各不相同,在可见光波段区分明显,总体上,光谱反射率最高的样本组SPAD值较低;叶绿素SPAD值相同时,在可见光波段,桂花较其余树种反射率整体较高; 在780~1 350 nm波段,广玉兰叶片反射率始终排前三,其余波段变化规律不明显;原始光谱反射率的二阶微分与海桐叶片SPAD值相关系数最大,一阶微分与其余8种相关性最高;与灌木、落叶乔木叶片SPAD值相关系数最大的光谱指数分别为差值指数、一阶微分归一化指数,与常绿乔木、不分树种相关系数最大的为一阶微分比值指数。 相似文献
11.
利用高光谱植被指数估测苹果树冠层叶绿素含量 总被引:8,自引:0,他引:8
叶绿素含量是反映植物生长状况的重要参数。利用ASD FieldSpec 3光谱仪,测定春梢停止生长期苹果冠层高光谱反射率,对原始光谱进行微分变换,与苹果叶绿素含量进行相关分析确定敏感波段,通过分析敏感区域400~1 350 nm范围内所有两波段组合的植被指数,选择最佳植被指数并建立苹果冠层叶绿素含量估测模型。结果表明:(1)苹果冠层叶绿素含量的敏感波段区域为400~1 350 nm。(2)利用筛选得到的植被指数CCI(D794/D763)构建的估测模型能较好的估测苹果冠层叶绿素含量。(3)以CCI(D794/D763)指数为自变量的估测模型CCC=6.409+1.89R3+1.587R2-7.779R预测效果最佳。因此,利用高光谱技术能够较快速、精确的对苹果冠层叶绿素含量进行定量化反演,为苹果长势的遥感监测提供理论依据。 相似文献
12.
基于神经网络的叶绿素含量精细测量建模方法研究 总被引:3,自引:0,他引:3
活体植物叶片叶绿素含量SPAD值易受叶片厚度、水分等影响,提出了基于多参数神经网络建模的叶绿素含量精细反演方法。通过测量叶片在中心波长分别为650,940和1 450 nm光照射下的透过率,获得叶片的SPAD值和水分指数WI(water index),同时用数字螺旋测微仪测量相应的叶片厚度并用分光光度法测得其叶绿素含量。利用建模集样本分别建立SPAD值与实测叶绿素含量之间的单参数模型和基于BP神经网络的WI、厚度及SPAD值与实测叶绿素含量之间的非线性模型。利用这两种模型分别计算获得验证集样本的叶绿素含量预测值,对预测值和实测值进行了相关分析和相对误差的分析。实验以340个三种不同植物叶片为样本,用以上方法进行了分析。结果表明,利用BP神经网络建模后,每种植物样本的叶绿素含量预测精度都有不同程度的提高,尤其对于叶片厚度值较大的样本,效果更为明显。数据显示所有混合样本平均相对误差绝对值由单参数模型的7.55%降低到5.22%,实测值与预测值的拟合决定系数由0.83提高到0.93。验证了利用多参数BP神经网络模型可以有效地提高活体植物叶绿素含量预测精度的可行性。 相似文献
13.
综合使用光谱技术对作物养分进行实时、有效诊断,有助于作物的精准管理、保障产量和减少环境污染,提高肥料利用率,并且为定量估测作物生化组分状况提供了一种新的途径.光谱指数是进行作物叶片叶绿素实时估测的重要指标,然而由于受到环境条件及内在生化成分的影响,估测结果不尽满意.为了进一步提高光谱指数在估测作物叶片叶绿素含量时的抗干... 相似文献
14.
叶绿素含量(SPAD)是作物长势评价的重要指标,可以监测农作物的生长状况,对农业管理至关重要,因此快速、准确地估算SPAD具有重要意义。以冬小麦为研究对象,利用无人机高光谱获取了拔节期、挑旗期和开花期的影像数据,获取植被指数和红边参数,研究植被指数与红边参数估算SPAD的能力。先将植被指数与红边参数分别与不同生育期的SPAD进行相关性分析,再基于植被指数、植被指数结合红边参数,通过偏最小二乘回归(PLSR)方法估算SPAD,最后制作SPAD分布图验证模型的有效性。结果表明,(1)大部分植被指数与红边参数在3个主要生育期与SPAD相关性均达到极显著水平(0.01显著);(2)单个植被指数构建的SPAD估算模型中,LCI表现最好(R2=0.56,RMSE=2.96,NRMSE=8.14%),红边参数中Dr/Drmin表现最好(R2=0.49,RMSE=3.18,NRMSE=8.76%);(3)基于植被指数结合红边参数构建的SPAD估算模型效果最佳,优于仅基于植被指数构建的SPAD估算模型,同时,随着生育期推移,两种模型均在开花期达到最高精度,R2分别为0.73和0.78,RMSE分别为2.49和2.22,NRMSE分别为5.57%和4.95%。因此,基于植被指数结合红边参数,并使用PLSR方法可以更好地估算SPAD,可以为基于无人机遥感的SPAD监测提供一种新的方法,也可为农业管理提供参考。 相似文献
15.
LI Li-jie YUE Yan-bin WANG Yan-cang ZHAO Ze-ying LI Rui-jun NIE Ke-yan YUAN Ling 《光谱学与光谱分析》2021,41(11):3538-3544
火龙果是近年来引进我国的营养价值高、经济效益好的新型水果,肉质茎枝是其主要光合器官,与常见果树具有较大差异。为探索以茎枝为光合作用器官的植被的光谱特征及其生化组分的估测方法,以火龙果为研究对象,在贵州省典型种植区罗甸县开展了4个氮肥梯度田间试验,同步测定不同养分丰缺程度下的火龙果茎枝高光谱和相应叶绿素含量数据;然后分析火龙果茎枝光谱数据的演化规律,并采用数学变换、连续小波变换算法并结合相关性分析算法处理分析火龙果茎枝光谱数据,提取并筛选特征波段;最后利用偏最小二乘算法构建火龙果茎枝叶绿素含量估测模型。研究结果表明:(1)火龙果肉质茎枝的原始光谱曲线整体趋势与常见绿叶植物相似,但随施氮量的增加,火龙果近红外处的光谱反射率逐渐降低,变化趋势与常见绿叶植物相反,茎枝光谱的吸收峰(谷)随施氮量的增加呈升高(加深)的趋势。(2)数学变换中的一阶微分与在L1-L5尺度内的连续小波变换能有效提升光谱对叶绿素含量的敏感性,火龙果茎枝原始光谱与叶绿素含量的敏感区域主要位于730~1 400 nm,数学变换与连续小波变换均能提升光谱对叶绿素含量的敏感性。与常见绿叶植物相比,火龙果茎枝敏感波段分布相对分散,且多位于730 nm附近与近红外区域(1 100~1 600 nm)。(3)数学变换和连续小波变换能明显提升光谱对火龙果茎枝叶绿素含量的估测能力,其中基于一阶微分的估测模型与基于连续小波变换L1与L4的估测模型分别为数学变换与连续小波变换的最优模型,其验证精度分别为R2验证=0.625,RMSE=0.048,RPD=1.238(一阶微分);R2验证=0.678,RMSE=0.037,RPD=1.652(连续小波变换);表明高光谱技术可以作为火龙果茎枝叶绿素含量和营养诊断的无损监测手段。该研究为完善不同植被类型基于高光谱指数的叶绿素反演提供了补充。 相似文献
16.
消费级近红外相机的水稻叶片叶绿素(SPAD)分布预测 总被引:2,自引:0,他引:2
便捷可靠的作物营养诊断是作物科学施肥管理的基础,也是精准农业的核心。叶绿素含量是作物氮营养含量的重要指标。以水稻叶片为研究对象,用改造后的普通单反相机搭载滤波片的方式拍摄叶片的可见光和中心波长为650,680,720,760,850和950 nm多个波段的近红外图像,获取不同波段的相对反射率值,通过可见光与多个近红外波段结合的回归分析与比较,筛选出精度较高且稳定的模型。经过对比相机三个成像通道,R通道与叶绿素含量(SPAD值)的相关性要高于B和G通道。实验结果表明,植被指数GVI最能反映作物的生长状况,近红外波段760 nm对SPAD值的预测效果最好,最小二乘支持向量机法结合多个植被指数建模的预测精度R2为0.831 4,取得了较为理想的效果。同时使用高光谱成像仪采集水稻叶片的高光谱影像,对比消费级近红外相机成像方式下与高光谱成像方式下得到的植被指数多因子预测模型精度,两者相当。实验证明消费级近红外相机能够获得与高光谱成像仪相近的叶绿素含量估测结果。 相似文献
17.
基于光谱分析的草地叶绿素含量估测植被指数 总被引:2,自引:0,他引:2
对现有叶绿素遥感估测研究方法进行比较,确定植被指数法是其中最实用、普适性最强的研究方法。近年来,草地退化问题日益严峻,需要进一步从光谱分析、植物生化参数估测的角度加以研究,因而亟需建立一种用于反演草地植被叶绿素含量的植被指数。首先对四川省松潘草原和内蒙古自治区贡格尔草原的草地实测反射率光谱曲线及其一阶微分曲线进行分析,通过这两种光谱与叶绿素含量的相关性分析,找到红边区域(red-edge position, REP)与草地叶绿素含量之间的规律,即叶绿素含量越高,反射率一阶微分曲线的红边拐点(red-edge inflection point, REIP)取值越高,由此构建草地叶绿素含量估测植被指数(grassland chlorophyll index, GCI),选取最适宜反演的波段,最后采用卫星高光谱影像计算GCI,将计算结果与野外试验观测的叶绿素含量数据进行精度分析验证。结果证明,对于草地叶绿素含量来说,GCI比其他叶绿素指数的敏感性更强,具有较高的草地叶绿素含量估测精度。GCI是第一个针对草地叶绿素含量估测而被提出的植被指数,其对遥感反演草地叶绿素含量具有广泛应用潜力。同时这种基于光谱分析的草原植被叶绿素含量估测方法为其他的草原植被生化参数估测、草原植被生长状况评价以及草地生态环境变化大面积监测提供了新的研究思路。 相似文献