共查询到20条相似文献,搜索用时 78 毫秒
1.
氮、磷、钾元素是植物有机质的重要生化组分,准确估算其含量对监测管理植被的新陈代谢和健康状况具有重要意义。可见-近红外光谱结合多种建模方法已被用于植被生化参数的监测,其中支持向量机回归方法被证明能够较好拟合反射光谱和植被生化参数之间的非线性关系,而选取适当的核函数是其成功的关键。以宜兴地区水稻、玉米、芝麻、大豆、茶叶、草地、乔木和灌木等八种植被叶片样本为研究对象,分析比较基于径向基核函数、多项式核函数和S形核函数的支持向量回归模型估算叶片氮、磷、钾元素含量的能力。利用一阶微分变换、标准正态变量变换和反对数变换对叶片可见-近红外光谱进行预处理,运用bootstrapping法生成1 000组校正集和验证集,分别建立基于三种核函数的支持向量回归估算模型,以决定系数(R2)和相对分析误差(RPD)的均值作为评价指标。结果显示,结合一阶微分和反对数变换光谱,采用径向基核函数模型对氮、钾元素估算精度最高(氮:平均R2=0.64,平均RPD=1.67;钾:平均R2=0.56,平均RPD=1.48),结合一阶微分变换光谱,采用径向基核函数模型对磷元素估算精度最高(磷:平均R2=0.68,平均RPD=1.73)。研究表明,结合不同预处理的可见-近红外光谱,基于径向基核函数的支持向量回归模型具有较好的估算多种植被叶片生化组分含量的潜力。 相似文献
2.
采用可见-近红外高光谱成像技术结合化学计量学方法检测灵武长枣维生素C(VC)含量,探究一种全新的水果内部成分的快速无损检测方法。采用高效液相色谱法(HPLC)测得长枣的VC含量化学值,可见—近红外高光谱成像系统采集164个灵武长枣400~1 000nm的高光谱图像,利用ENVI4.8软件提取图像的感兴趣区域(region of interest,ROI),计算其平均光谱,获得光谱值,将化学值与光谱值通过The UnsecramblerX 10.4软件建立模型。利用蒙特卡洛交叉验证法剔除异常值,采用光谱理化值共生距离法(sample set partitioning based on joint x-y distance,SPXY)进行样本划分以提高模型的预测性能;对光谱采用移动平滑(moving average)、中值滤波(median filter)、归一化(normalize)、基线校准(baseline)、多元散射校正(multiple scattering correction,MSC)、去趋势(detrending)和标准正态变量变换(standard normal variate,SNV)等7种方法进行预处理;为进一步减少数据量,降低维度,提高运算速度,使用竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)、无信息变量消除算法(uninformative variable elimination,UVE)和连续投影算法(successive projections algorithm,SPA)提取特征波长,以期实现以少数波段代替全波段;将全波段光谱(full spectrum,FS)以及CARS,UVE和SPA三种方法提取的特征波长分别建立偏最小二乘(partial least squares wavelength regression,PLSR)和支持向量机(support vector machine,SVM)模型,从而确定最优的建模模型。利用蒙特卡洛交叉验证法共剔除7个异常样本,采用SPXY法将剔除异常样本后的157个数据区分为校正集和预测集,校正集中样本个数为117,预测集中样本个数为40。将未经光谱预处理的建模结果与分别经过七种光谱预处理的建模结果相比,选择未经光谱预处理的数据进行后续分析;将未经光谱预处理的光谱值采用CARS,UVE,SPA方法进行提取特征波长,CARS共优选出406,415,487,631,636,655,660,665,670,684,689,694,723,732,747和881nm下的光谱变量16个,利用CARS提取出的特征波长占总波长的12.8%;UVE共优选出406,415,627,631,636,651,655,660,665,670,675,679,684,689,694,699,703,708,742,747,751,756,761,766,771,775,780,785,790,795,919和924nm下的32个特征波长,利用UVE提取出的特征波长占总波长的25.6%;SPA共优选出401,665,684nm三个特征波长,利用SPA提取出的特征波长占总波长的2.4%。将全波段光谱与提取出的特征波长建立PLSR模型和SVM模型,对比模型结果显示UVE-SVM模型最优,其R2c为0.8471,R2p为0.714 9,说明UVE有效地对光谱进行降维,简化了数据处理过程。本研究对高光谱成像技术在水果领域的应用进行了有益探索,探究了一种全新的灵武长枣VC含量的无损检测方法,相应建立的可见-近红外高光谱模型为其他水果成分的快速检测提供了理论基础。 相似文献
3.
高光谱成像技术的库尔勒梨早期损伤可视化检测研究 总被引:2,自引:0,他引:2
利用高光谱成像技术对库尔勒梨早期损伤进行快速识别检测。以60个库尔勒梨为研究对象,采集380~1 030 nm波段范围内完好样本和损伤后1~7天样本的480幅高光谱图像。提取图像中感兴趣区域(ROI)的平均光谱信息,利用小波变换(WT)对光谱数据进行去噪平滑,将去噪后的全部样本按2∶1的比例分成建模集(320个)和预测集(160个)。利用二阶导数从全谱信息中提取出19个特征波长,分别基于全谱和提取出的特征波长对建模集和预测集进行支持向量机(SVM)建模分析。结果表明,基于全谱和特征波长的判别分析模型中,两者预测集的识别率都达到93.75%,表明提取的特征波长包含了光谱数据中的关键信息。然后,基于特征波长运用波段比运算挑选最佳波段比,根据波段比F值的分布确定光谱图像分割的最佳波长684和798 nm。对最佳波段比(684/798 nm)下的图像,利用选择性搜索(SS)对高光谱图像中样本的完好和损伤区域进行分割,从分割结果来看,1~7天损伤样本的受损区域能够被准确检测出来。研究结果表明:基于高光谱成像技术对库尔勒梨进行损伤鉴别是可行的,该研究所获得的特征波长和波段比为研发在线实时的库尔勒梨损伤检测系统提供支撑。 相似文献
4.
在田间原位对烟叶成熟度进行判别,能够有效减少由于对成熟度判断错误而导致的烟叶损失率升高、质量下降的问题,而传统的人眼结合叶龄的田间成熟度判别方法缺少客观性,因此提出采用光谱特征参数结合支持向量机的方法对田间原位烟叶成熟度进行判别。以专家评定并在田间原位进行测量的五个成熟度等级共351个烟叶反射光谱作为试验样品,五个成熟度等级分别为M1,M2,M3,M4,M5。通过对反射光谱的分析发现,不同成熟度烟叶的光谱在可见光波段能够得到区分,而在近红外波段区分不明显,因此在可见光波段进行分析建模。分别采用可见光范围内的连续光谱(350~780 nm)、特征波段(496~719 nm)、光谱特征参数(绿峰幅值、绿峰位置、红边幅值、蓝边幅值、红边面积、蓝边面积、红边位置、蓝边位置)作为输入变量,采用支持向量机方法(supportvector machine,SVM)建立烟叶成熟度判别模型。结果表明,应用可见光光谱特征参数作为输入变量所建立的模型的正确识别率达到98.85%,而应用可见光连续谱、可见光特征波段作为输入变量的正确识别率分别为90.80%和93.10%。因此使用可见光光谱特征参数建立支持向量机的鲜烟叶成熟度判别模型对田间原位烟叶成熟度进行判别是可行的。 相似文献
5.
玉米是世界主要粮食作物之一,使用不符合国家标准的劣质种子将严重影响玉米作物产量,如何快速准确高效鉴别劣质玉米种子亟待解决.采用高光谱图像系统获取900粒\"豫安三号\"玉米种子的900~1 700 nm光谱曲线,其中训练集和测试集比例为3:2,分别为540粒和360粒.利用电鼓风式烘干箱对种子损伤处理,获得不同损伤程度的玉米种子样本,采集光谱后完成发芽试验,以此判别种子活力.为提高信噪比,截取963.27~1698.75 nm范围内的玉米种子光谱波段作为有效波段;采用标准正态变换(SNV)、多元散射校正(MSC)两种预处理方式对原始光谱数据预处理,并采用连续投影算法(SPA)、竞争性自适应重加权算法(CARS)两种特征波段提取算法对预处理后的光谱数据提取特征波段,波长反射率作为输入矩阵X,预设样本类别作为输出矩阵Y;最后采用支持向量机(SVM)模型建模分析,研究结果表明:MSC-CARS-SVM模型为最佳模型,模型识别成功率为98.33%,其Kappa系数为0.985.在此基础上,采用遗传算法(GA)对SVM中惩罚系数c和核函数参数g寻优,模型准确率提升至100%,可实现对热损伤劣质玉米种子的鉴别.该研究为劣质玉米种子及其他作物种子快速鉴别提供了新思路和方法. 相似文献
6.
基于高光谱成像技术的番茄茎秆灰霉病早期诊断研究 总被引:3,自引:0,他引:3
共采集了112个番茄茎秆高光谱数据(光谱范围400~1 030 nm),结合图像处理和化学计量学方法建立了番茄茎秆灰霉病早期诊断模型。应用偏最小二乘法(PLS)模型的隐含变量载荷分布选取了七个特征波长(EW),并建立了番茄茎秆灰霉病早期诊断的最小二乘支持向量机(LS-SVM)模型。结果表明,经过变量标准化(SNV)及多元散射校正(MSC)预处理所建立的EW-LS-SVM模型获得了满意的判别效果,且优于全波段的PLS模型。说明高光谱成像技术进行番茄茎秆灰霉病的早期诊断是可行的,为番茄病害早期诊断和预警提供了新的方法。 相似文献
7.
针对光谱分类,提出了一种基于核技巧的覆盖算法——核覆盖算法。该算法将核技巧与覆盖算法相结合,并在特征空间中抽取支持向量。实验表明核覆盖算法在光谱分类中的精度与SVM相差不大,但是它只涉及距离的计算,不必象SVM那样求解二次规划问题,对于核宽的选择也不象SVM那样非常敏感。核覆盖算法与覆盖算法相比分类性能相当,它的优势在于引入的非线性映射Φ改变了样本集在特征空间中之间的距离关系,使得核覆盖算法得到的支持向量个数大大少于覆盖算法。 相似文献
8.
近红外光谱结合化学计量学方法对癌症的辅助诊断已有了文献报道.该文测定了77例不同生理阶段的子官内膜组织病理切片的近红外光谱,对其分别进行多元散射校正(MSC)、正交信号校正(OSC)以及二者联用的预处理方法,采用拉丁配分法选择3/4样本作为训练集,1/4样本作测试集,建立支持向量机(SVM)模型进行分类,并与基于同样预... 相似文献
9.
近红外光谱结合化学计量学方法对癌症的辅助诊断已有了文献报道.该文测定了77例不同生理阶段的子官内膜组织病理切片的近红外光谱,对其分别进行多元散射校正(MSC)、正交信号校正(OSC)以及二者联用的预处理方法,采用拉丁配分法选择3/4样本作为训练集,1/4样本作测试集,建立支持向量机(SVM)模型进行分类,并与基于同样预处理方法建立的偏最小二乘(PLS)模型分类结果进行了比较.SVM对正常、增生和癌变三类不同的组织样品分类结果较好,总分类正确率约92%,好于PLS模型的结果(最高正确率90%).研究结果表明,光谱数据的预处理和建模方法对分类结果有重要影响,SVM结合子宫内膜组织的近红外光谱有望发展成为一种新型的肿瘤诊断方法. 相似文献
10.
基于可见-近红外光谱和多光谱成像技术的梨损伤检测研究 总被引:3,自引:0,他引:3
提出了利用可见-近红外光谱技术和多光谱成像技术检测鸭梨损伤随时间及程度变化的新方法.利用可见-近红外光谱技术,分别结合偏最小二乘(panial least squares,PLS)和最小二乘支持向量机(least squares-support vector machine,LS-SVM)方法对鸭梨受损程度和受损天数进行预测.结果表明,两种方法在鸭梨损伤后期对损伤程度的判别均具有较好的效果;LS-SVM方法对鸭梨轻度损伤的损伤天数的预测精度较高,但重度损伤天数的预测效果不如PLS方法.然后利用多光谱图像预测鸭梨受损天数.研究发现,利用LS-SVM建立的模型预测效果较稳定,预测结果相关系数均在0.85左右.说明利用可见-近红外光谱分析技术和多光谱成像技术能够快速无损地检测出鸭梨的损伤程度及时间,为鸭梨检测提供了一种新方法. 相似文献
11.
针对马铃薯空心病的难以检测问题, 提出了一种基于半透射高光谱成像技术结合支持向量机(support vector machine, SVM)的马铃薯空心病无损检测方法。选取224个马铃薯样本(合格149个, 空心75个)作为研究对象, 搭建了马铃薯半透射高光谱图像采集系统, 采集了马铃薯样本半透射高光谱图像(390~1 040 nm), 对感兴趣区域内的光谱进行平均和光谱特征分析。采用变量标准化(normalize)对原始光谱进行光谱预处理, 建立了全波段的SVM判别模型, 模型对测试集样本的识别准确率仅为87.5%。为了提高模型性能, 采用竞争性自适应重加权算法(competitive adaptive reweighed sampling algorithm, CARS)结合连续投影算法(successive projection algorithm, SPA)对光谱全波段520个变量进行变量选择, 最终确定了8个光谱特征变量(454, 601, 639, 664, 748, 827, 874和936 nm), 所选8个光谱变量建立的SVM模型对马铃薯测试集的识别率为94.64%。分别采用人工鱼群算法(artificial fish swarm algorithm, AFSA)、遗传算法(genetic algorithm, GA)和网格搜索法(grid search algorithm)对SVM模型的惩罚参数c和核参数g进行优化。经过建模比较分析, 确定AFSA为最优优化算法, 最优模型参数为c=10.659 1, g=0.349 7, 确定AFSA-SVM模型为马铃薯空心病的最优识别模型, 该模型总体识别率达到100%。试验结果表明: 基于半透射高光谱成像技术结合CARS-SPA与AFSA-SVM方法能够对马铃薯空心病进行准确的检测, 也为马铃薯空心病的快速无损检测提供技术支持。 相似文献
12.
半透射高光谱成像技术与支持向量机的马铃薯空心病无损检测研究 总被引:1,自引:0,他引:1
针对马铃薯空心病的难以检测问题,提出了一种基于半透射高光谱成像技术结合支持向量机(support vector machine,SVM)的马铃薯空心病无损检测方法。选取224个马铃薯样本(合格149个,空心75个)作为研究对象,搭建了马铃薯半透射高光谱图像采集系统,采集了马铃薯样本半透射高光谱图像(390~1 040 nm),对感兴趣区域内的光谱进行平均和光谱特征分析。采用变量标准化(normalize)对原始光谱进行光谱预处理,建立了全波段的SVM判别模型,模型对测试集样本的识别准确率仅为87.5%。为了提高模型性能,采用竞争性自适应重加权算法(competitive adaptive reweighed sampling algorithm, CARS)结合连续投影算法(successive projection algorithm, SPA)对光谱全波段520个变量进行变量选择,最终确定了8个光谱特征变量(454,601,639,664,748,827,874和936 nm),所选8个光谱变量建立的SVM模型对马铃薯测试集的识别率为94.64%。分别采用人工鱼群算法(artificial fish swarm algorithm,AFSA)、遗传算法(genetic algorithm,GA)和网格搜索法(grid search algorithm)对SVM模型的惩罚参数c和核参数g进行优化。经过建模比较分析,确定AFSA为最优优化算法,最优模型参数为c=10.659 1,g=0.349 7,确定AFSA-SVM模型为马铃薯空心病的最优识别模型,该模型总体识别率达到100%。试验结果表明:基于半透射高光谱成像技术结合CARS-SPA与AFSA-SVM方法能够对马铃薯空心病进行准确的检测,也为马铃薯空心病的快速无损检测提供技术支持。 相似文献
13.
基于支持向量机的水稻叶面积指数高光谱估算模型研究 总被引:2,自引:1,他引:2
为了研究支持向量机(SVM)对于作物农学参数高光谱估算的能力,通过大田小区试验,测定了2个品种、3个供氮水平处理的水稻在不同生长期的冠层高光谱反射率(350~2 500 nm)。依据Ladsat-5的TM传感器波段宽度,将高光谱反射率转换为10种不同的植被指数。利用所有样本的植被指数和水稻叶面积指数(LAI),通过不同统计模型的模拟分析,依据模型的R2选取了三种相关性较高的统计关系(包括NDVIgreen的指数关系、TCARI/OSAVI的乘幂关系和RVI2的乘幂关系)。对这三种关系,通过具有不同核函数的SVM模型和相应统计模型对LAI进行估算。结果表明:所有的SVM模型都具有较低的均方根误差值,估算精度都高于相应的统计模型;基于TCARI/OSAVI的POLY核SVM具有最高的估算精度,其RMSE比相应的统计模型降低近11个百分点。因此,SVM方法用于水稻LAI高光谱估算具有良好的学习能力和鲁棒性。 相似文献
14.
基于高光谱成像和判别分析的黄瓜病害识别 总被引:3,自引:0,他引:3
利用光谱成像技术(400~720 nm)识别黄瓜白粉病、角斑病、霜霉病、褐斑病和无病区域。构建高光谱图像采集系统进行样本图像的采集,预处理和光谱信息的提取。由于获得的原始光谱数据量很大,为了减少后续运算量,提高准确率,采用逐步判别分析和典型判别分析两种方法进行降维。逐步判别从55个波段中选择12个波段,典型判别从55个波段中提取2个典型变量。利用选择的光谱特征参数建立病害识别模型。逐步判别构建的模型对训练样本和测试样本的判别准确率分别为100%和94%,典型判别构建的模型对训练样本和测试样本的判别准确率均为100%。说明利用高光谱成像技术可以进行黄瓜病害的快速、准确识别,并为实现可见光谱范围内黄瓜病害的田间实时在线检测提供了可能。 相似文献
15.
三七粉是三七的主要消费和商品形式,市场上存在以次充好、甚至是掺假的现象,由于是粉状物料,难以用肉眼判别,为了实现对不同质量等级的三七粉进行无损鉴别。将30头、40头、60头和80头的三七主根研磨成粉,制备样本。采用可见近红外高光谱成像系统(400.68~1 001.61 nm)采集4种不同头数三七粉,共计384个样品的高光谱图像,提取高光谱图像感兴趣区域(ROI)的平均光谱值作为样本原始光谱。将384个三七粉样本按2∶1的比例划分训练集和测试集。采用卷积平滑(SG)、多元散射校正(MSC)和标准正态变量变换(SNV)3种预处理方法对三七粉样本光谱信息进行预处理并建立支持向量机(SVM)分类模型,通过比较基于3种预处理方法的SVM模型测试集分类准确率,确定SNV为最优预处理方法。采用迭代保留信息变量(IRIV)、变量组合集群分析(VCPA)和变量组合集群分析混合迭代保留信息变量(VCPA-IRIV)3种特征选择方法提取SNV预处理后光谱的特征波长并建立基于特征光谱和原始光谱的SVM分类模型,通过比较基于3种特征选择方法得到的特征波长建立的SVM模型测试集分类准确率,发现将VCPA与IRIV相结合的VCPA-IRIV为最优特征选择方法。VCPA-IRIV提取了18个特征波长代替全光谱数据参与建模,该算法在降低模型复杂度的同时保持了模型的分类精度。为了提高模型的分类精度,采用引力搜索算法(GSA)对SVM模型中惩罚因子c和核参数g进行寻优,并与网格搜索(GS)的结果进行比较,结果表明,VCPA-IRIV-GSA-SVM模型分类效果最好,测试集分类准确率达到100%。可见,利用可见近红外高光谱成像对三七粉进行质量等级无损鉴别是可行的,为市场上三七粉的质量等级鉴别提供了参考。 相似文献
16.
支持向量机(SVM)在傅里叶变换近红外光谱分析中的应用研究 总被引:18,自引:6,他引:18
支持向量机(SVM)用于两类问题的识别研究,它是统计学习理论中最年轻的分支,所建分析模型有严格的数学基础。同时介绍了SVM学习的基本原理和方法,并将该方法引入化学计量学,以103个中药大黄样品为实验材料,通过SVM近红外光谱法建立了大黄样品真伪识别模型。对学习集中33个样品模型识别准确率为100%;对70个预测样品的识别准确率为96.77%, 为中药大黄的快速识别提供了参考。研究结果表明了SVM近红外光谱法建立生物样品识别模型的可行性。通过旨在介绍SVM学习方法的基本思想,以引起化学计量学工作者的进一步关注。 相似文献
17.
18.
准确重建被测目标的颜色信息对实现可靠的植物病虫害诊断具有十分重要的意义。文章提出把多光谱成像技术应用于植物病虫害诊断,所采集的多光谱图像可以从光谱维和图像维反映被测目标的特征信息。在此基础上,实验采用16个窄带滤色片、单色面阵CCD、积分球混合光源照明和标准观测环境建立了能进行适时、无损检测的多光谱成像系统。并利用该设备对Macbeth色卡中8个色卡进行光谱和颜色重建,重建的结果与光谱辐射度计的测量结果进行了比较。通过对光谱匹配角度和CIE标准色差分析,证明这种多光谱成像系统能够准确、稳定地重建出目标的光谱信息和颜色信息。 相似文献
19.
Combining Support Vector Machine (SVM) with wavelet analysis, we constructed wavelet SVM (WSVM) classifier based on wavelet kernel functions in Reproducing Kernel Hilbert Space (RKHS). In conventional kernel theory, SVM is faced with the bottleneck of kernel parameter selection which further results in time-consuming and low classification accuracy. The wavelet kernel in RKHS is a kind of multidimensional wavelet function that can approximate arbitrary nonlinear functions. Implications on semiparametric estimation are proposed in this paper. Airborne Operational Modular Imaging Spectrometer II (OMIS II) hyperspectral remote sensing image with 64 bands and Reflective Optics System Imaging Spectrometer (ROSIS) data with 115 bands were used to experiment the performance and accuracy of the proposed WSVM classifier. The experimental results indicate that the WSVM classifier can obtain the highest accuracy when using the Coiflet Kernel function in wavelet transform. In contrast with some traditional classifiers, including Spectral Angle Mapping (SAM) and Minimum Distance Classification (MDC), and SVM classifier using Radial Basis Function kernel, the proposed wavelet SVM classifier using the wavelet kernel function in Reproducing Kernel Hilbert Space is capable of improving classification accuracy obviously. 相似文献
20.
近红外光谱法结合支持向量机测定天然牛黄粉中人工牛黄的掺入量 总被引:3,自引:1,他引:3
提出了应用近红外漫反射光谱技术结合支持向量机测定天然牛黄粉中人工牛黄的含量的方法。以傅里叶变换近红外光谱仪(4 000 ~10 000 cm-1)为试验仪器,以含有不等量人工牛黄的天然牛黄粉(天然牛黄的质量分数范围为 0%~100%)作为校正样品,对光谱数据进行平滑、求导和小波压缩,结合支持向量机,建立了测定天然牛黄粉中人工牛黄含量的模型。试验结果为: 预测相对误差的平方和可达 0.001 35。研究表明:近红外漫反射光谱法结合支持向量机可以测定天然牛黄粉中人工牛黄的掺入量,结果可靠, 可用于天然牛黄粉的质量控制。 相似文献