首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
发展新型药物检测技术不仅能够杜绝假药对健康和生命的危害,更可以避免假药对社会道德和商业风气等产生不良影响。该研究工作,通过建立逆向空间偏移拉曼光谱(SORS)实验装置,克服了传统拉曼探测深度有限(约几百微米)的应用瓶颈,以无损、非接触的方式,克服不/半透明容器光学背景对光谱测量结果产生的影响,实现多种空间偏移量(Δs)条件下,样品特征光谱信息检测与分析,为开发基于逆向SORS技术的新型药物检测方法奠定实验基础。实验装置搭建过程中,采用785 nm半导体激光器与WITec UHTS300型拉曼光谱仪构建逆向SORS光谱分析装置。通过使用准直光束照射锥透镜形成环形激发光斑,并控制锥透镜与样品之间的距离,实现Δs连续可控变化。利用所搭建的光谱检测装置,分别测量聚乙烯方瓶(厚度为1.5 mm)和聚四氟乙烯离心管(厚度为4 mm)内对乙酰氨基酚和甲硝唑的拉曼特征光谱。利用环形光束照射会抑制容器峰强度这一特点,选取容器拉曼特征峰作为标准峰,分别对点光斑(Spot)和环形(Ring)光斑测量结果进行归一化处理,并将其强度相减(Ring-Spot),得到逆向SORS光谱测量结果。实验结果表明,逆向SORS光谱检测方法能够克服表层容器光学背景对测量结果产生的干扰性因素,真实反映不/半透明容器内样品的分子指纹光谱信息。在实验测量范围内,当环形光束半径增大1倍时,聚乙烯方瓶内对乙酰氨基酚拉曼特征峰强度增大6倍,而聚四氟乙烯离心管内的甲硝唑各特征峰强度增强1倍。以上实验结果表明,逆向SORS技术能够准确检测不/半透明容器内,或有漫散射介质覆盖的样品深层化学成分的指纹光谱。通过提高系统信噪比并优化系统结构与功能,在建立小型化、集成化检测系统的条件下,逆向SORS技术可与现有的多种药物检测技术相互补充,发展成一种快捷、准确、操作简便的新型药物检测手段。  相似文献   

2.
传统拉曼光谱只能探测样品的表层信息,或者只能穿透透明的表层探测样品内部,对多层不透明或不透明包装的样品检测则不适用了,比如搜索隐蔽的爆炸物、识别有包装的假药、无损检测骨骼疾病等。空间偏移拉曼光谱(SORS)技术是一种新型光谱检测技术,能够非侵入不透明包装或表层直接获得样品内部深层特征信息,这一技术的出现解决了上述的难题。首先详细介绍了SORS技术的工作原理:其根本原理在于光子迁移理论,其系统激光光源的入射焦点与光谱系统中收集透镜的焦点在待测样品表层空间上偏移一定的距离ΔS。当激光入射到待测样品表层时,表层样品被激发或散射出宽带荧光,其中有一部分散射光将到达样品内部,样品内部深层处产生的拉曼散射光子相比于样品表层的光子在散射过程中更易于横向迁移,经多次散射后返回样品表层被光谱仪器接收系统收集。到达样品内部不同深度ΔH的散射光返回表层后的位置距离激光光源入射点在样品表层上有不同的偏移距离ΔS。当空间偏移距离ΔS=0时,激光光源入射点与拉曼光谱收集点重合,此处激发的光子密度最大,系统收集到的拉曼光谱信号大部分来自样品表层,样品深层拉曼信号被淹没;当空间偏移距离ΔS≠0时,光谱仪器收集到的拉曼光谱信号中来自表层的信号衰减很快,来自样品深层的信号衰减较慢,使得更深层的拉曼散射光子比重变大,从而实现光谱分离,再结合多元数据分析方法可以获得样品内部不同深层次的拉曼光谱,即空间偏移拉曼光谱。该技术具有很好抑制表层物质拉曼光谱和荧光光谱干扰的能力,特别适用于隐蔽在不透明包装材料下的物质拉曼光谱的提取,从而快速、非侵入地对目标物成分进行鉴定。其次介绍了SORS技术的特点。SORS技术是拉曼光谱的衍生技术,具备拉曼光谱技术的制样简单、水分干扰小、样品消耗量小、灵敏度高等全部优点,除此之外,有效抑制荧光、深层检测、非侵入无损检测、远距离检测等特点,这些特点有效提高了拉曼光谱强度,降低用户的检测和生产成本以及提高检测人员的人身安全。同时概述并对比了SORS技术现有的三种工作方式:标准SORS、逆SORS和倾斜SORS。标准SORS技术可进行远距离非接触测量,逆SORS较之标准SORS具有更高的灵敏度和抗光谱扭曲的潜力,而且入射的有效光照面和空间偏移距离ΔS是可控的,避免了样品过热;倾斜SORS具有较高的检测灵敏度,而且实验装置容易实现。然后在大量调研文献的基础上综述了近些年来SORS技术结合其他技术在化工生产、安检、生物医学、考古艺术、食品安全、稽查打假以及国防安全等多个领域的国内外发展和应用。最后指出了SORS技术目前存在的问题并展望了该技术未来的发展前景。  相似文献   

3.
空间偏移拉曼光谱技术[1](spatially offset Raman spectroscopy,SORS)的原理是基于激光照射位置与拉曼信号的收集位置偏移一定的距离。逆向空间偏移拉曼光谱技术[2](inverse spatially offset Raman spectroscopy,Inverse-SORS)是SORS技术的一种衍生变体。如Scheme 1所示是一套自搭建的Inverse-SORS系统,激光通过锥透镜形成环形光束照射到样品表面上,并在该环形光束的中心位置收集产生的拉曼信号,可通过移动锥透镜调节样品上环形光束的大小,从而改变空间偏移量(Δs)的大小。在本实验中,测试对象有样品Ⅰ:上层是厚度为0.50 mm的PMMA,下层是厚度为0.30 mm的PTFE,以及样品Ⅱ:上层是厚度为0.30 mm的PTFE,下层是厚度为1.50 mm的PMMA;采用波长为532 nm的激光为激发光,其功率为50 mW,信号收集时间60 s。对于样品Ⅰ的实验结果,从图1(a)中可看出,在偏移距离Δs为1.37 mm时可获得几乎纯净的PTFE的拉曼...  相似文献   

4.
拉曼光谱技术在爆炸物检测中的应用   总被引:1,自引:0,他引:1  
姜杰  李明  张静  高静 《光散射学报》2013,25(4):367-374
随着恐怖活动的蔓延,对爆炸物的检测和溯源变得越来越重要。拉曼光谱能够提供化合物的指纹图谱,是对物质定性分析的有力工具,具有无损、快速、准确度高等优点,近年来在爆炸物检测领域被广泛应用。本文介绍了共聚焦显微拉曼光谱、空间偏移拉曼光谱、表面增强拉曼光谱等拉曼光谱技术在爆炸物检测方面的应用及最新研究进展。  相似文献   

5.
传统拉曼光谱分析技术在对容器内未知样品进行检测时极易受到容器壁的荧光和拉曼散射干扰,其商业应用往往仅限于透明塑料或玻璃包装的情况。由于光子在介质内部的迁移方向具有随机性,与表层相比内部深层处产生的拉曼散射光子在扩散过程中更易于横向迁移,因此偏离激光入射点不同距离的拉曼光谱包含了不同深度层的拉曼光谱信息。空间偏移拉曼光谱技术通过将拉曼光收集点偏离激光入射点,能够抑制容器壁的荧光和拉曼散射干扰,从而实现对有色、不透明包装内样品的有效检测。通过设计搭建了空间偏移拉曼光谱实验装置,实现-1.0~10.0 mm偏移距离的可调节。使用青色、不透明的1 mm厚PMMA平板来模拟容器壁,使用碳酸钙(CaCO_3)粉末作为内部待测样品。分别采用传统方式(零偏移)和空间偏移方式对容器内样品进行测量。对采集的原始光谱首先进行平均和7阶多项式拟合去除基线(荧光),然后以3个最大特征峰的平均值作为光谱强度的评价指标,对空间偏移拉曼光谱信号随偏移距离的变化规律进行分析,发现:随着空间偏移距离的增大,容器壁的拉曼散射强度快速下降,而内部样品的拉曼散射强度先上升后缓慢下降;对于均匀厚度、各向同性的样品,变化趋势关于零偏移两侧对称,此外光束的斜入射会引起轻微的不对称;在某个偏移距离处样品与容器壁的光谱强度比值达到最大值,存在最优探测偏移距离,对于此次样品其最优偏移距离为1.2 mm。在容器和样品材质未知的情况下,采用比例相减的方法仍可以得到各层干净的拉曼光谱,通过对零偏移和最优偏移处的光谱进行计算,分别得到容器壁和内部样品干净的拉曼光谱,实现对内部样品的有效检测。研究结果在一定程度上证明了空间偏移拉曼光谱技术在不透明、有色容器内样品的检测方面的潜力,为进一步研究空间偏移拉曼光谱技术及数据处理方法提供基础。  相似文献   

6.
基于空间位移拉曼光谱原理,搭建了一套可以实现微小空间位移的装置,确定了最优的空间位移距离为300μm,用于穿透皮肤表层,减少皮肤表面水份、油脂等污染物的干扰,最终采集到皮肤内层的水份拉曼信号。该装置采用拉曼波数在3 390 cm-1(水拉曼峰)和2 935 cm-1(蛋白峰)处的强度之比确定组织中的水-蛋白比例,采用便携式光谱仪使设备便于移动,探头和光谱仪以光纤相连使探头可灵活操作,设计满足临床使用要求。实验中检测了7个人、每人10个共70个不同位置的皮肤光谱,将光谱进行去背景算法处理,然后得到精确的拉曼峰强度。以电学法皮肤水份测试仪测试结果作为对比,以组内相关系数作为一致性分析指标,由单个测量组内相关系数为0.889可以看出,基于空间位移拉曼光谱法的人体活体皮肤含水量检测具有较高可行性。  相似文献   

7.
拉曼光谱(Raman spectroscopy,RS)是一种散射光谱,具有样品前处理简单、响应速度快、灵敏性高以及原位无损检测等特点。由于拉曼信号具有指纹图谱特性和不受水分信息干扰的优势,其在生物体信息检测方面发挥着重要作用。拉曼光谱成像技术是拉曼光谱技术发展的新方向,其可以同时获取研究对象的空间及光谱信息;显微拉曼光谱技术不仅可以进行分子结构的检测,还能够实现生物组织微区化学成分的空间分布分析。目前,应用拉曼光谱进行农作物生理信息的检测成为学者们的研究热点。本文概述了拉曼光谱的基本原理和分类,并重点介绍了拉曼光谱技术在农作物的生殖与营养器官(种子,花朵,果实和根,茎,叶)中生理信息检测方面的国内外最新研究进展。最后结合国内外研究现状,分析了拉曼光谱在农作物生理信息检测中的局限,并对其的应用前景进行了展望。  相似文献   

8.
拉曼高光谱成像技术不仅可以获取样本的空间分布信息,图像上每个像素点还包括了完整的光谱信息,因其信息量丰富的特点已在食品安全检测方面得到了应用。本研究探索拉曼高光谱成像系统中光在奶粉层中的穿透深度,以及采集参数和奶粉类型对穿透深度的影响。实验选取均匀奶粉层样品放置于厚度为5 mm的三聚氰胺样本之上,检测奶粉层厚度为0.8~4.0 mm时的三聚氰胺特征峰强度,以此评估光在奶粉层中的穿透性和信号衰减情况。结果显示当奶粉层厚度一定时,随着激光功率变大,拉曼特征峰值随之增加,此外更长的曝光时间也可以使拉曼信号得到增强。在激光功率不小于2 W且曝光时间不小于500 ms时,光在全脂奶粉层的穿透深度可达4 mm。奶粉层厚度在0.8~4.0 mm范围内,穿透奶粉层的拉曼信号随着奶粉层厚度增加呈指数式衰减。在激光功率为8 W、曝光时间为1 000 ms的条件下,光在全脂、低脂和脱脂奶粉层的穿透深度均达到了4 mm。在相同测量厚度下,通过脱脂奶粉层接收的拉曼信号弱于通过全脂和低脂奶粉层接收的拉曼信号强度。研究结果为拉曼高光谱检测中奶粉样品的前处理提供了有益参考。  相似文献   

9.
激光拉曼光谱对苯的低浓度探测研究   总被引:1,自引:0,他引:1  
马靖  黄蓉 《光学技术》2014,40(3):195-198
激光拉曼光谱技术是基于拉曼散射理论的检测技术,具有快速、无损、样品无需预处理等优点。运用激光拉曼光谱技术对苯的25种不同浓度的样品进行了研究,结果表明,在184.8g/L~0.264g/L浓度范围内,苯的振动拉曼光谱强度与其浓度呈线性关系,利用最小二乘法拟合得到线性相关系数R=0.99626,检出限为0.223g/L。  相似文献   

10.
相干反斯托克斯拉曼光谱(CARS) 和相干反斯托克斯超拉曼光谱(CAHRS)等高阶非线性光谱技术已经应用在动力学过程、基因表达谱筛选、高分辨率光谱分析等诸多领域。但因其涉及到的高阶微观极化率张量元数量众多,对其光谱信号进行定量分析非常困难。文献通过理论分析将CARS和CAHRS的微观极化率张量元分解为拉曼微观极化率张量元微分α′i′j′和超拉曼微观极化率张量元微分β′i′j′k′的乘积,将高阶光谱定量分析的困难简化为对低阶光谱的分析。该研究处理了具有C2v对称性分子基团,提出一种利用键极化加和模型及其实验修正的方法简化超拉曼微观极化率张量元微分β′i′j′k′比值的方案。首先利用键极化加和模型方法,在对C2v分子基团局域模式假设的基础上,进行单键的局域模式假设,通过对单键伸缩振动进行简正振动模式的分析,并与单键的偶极矩表达式进行比较,得到单键的超拉曼微观极化率张量元微分β′i′j′k′。在单键β′i′j′k′结果的基础上利用键极化加和模型,对C2v分子基团进行对称性分析,将基团中两个单键伸缩振动的β′i′j′k′耦合,得到C2v分子基团对称振动和反对称振动两种简正振动模式的超拉曼微观极化率张量元微分β′i′j′k′的表达式。在此基础上对C2v分子基团对称振动和反对称振动的β′i′j′k′表达式进行理论推导,结合对应振动模式下不同偏振组合的超拉曼退偏率ρHR-SSρHR-AS及HV偏振组合时实验测量的超拉曼光谱强度比,得到超拉曼实验修正的C2v分子基团β′i′j′k′之间的比值。再结合文献中拉曼实验修正的拉曼微观极化率张量元微分α′i′j′之间的比值,即可得到C2v分子基团CARS和CAHRS的微观极化率张量元之间的比例关系,为定量分析高阶非线性光谱信息提供理论基础。  相似文献   

11.
内标法是激光诱导击穿光谱(LIBS)最常用的定量分析方法之一。为了提高定量分析精度,研究了谱线强度比的相对波动特性随分析线和内标线之间激发能级差(ΔE)和波长差(Δλ)变化的规律。在局部热力学平衡条件下,建立了考虑等离子体中某元素电子上能级跃迁到下能级产生原子发射谱线的激发能级差、等离子体温度、配分函数和离子密度等强度影响因素的数学模型,对模型中激发能级差对谱线强度相对波动的影响进行了研究。得到在-2 eV<ΔE<2 eV和等离子体温度范围在3 000~15 000 K条件下,谱线强度随着ΔET变化的趋势:随着ΔE变大,谱线强度比呈上升,在ΔE=2 eV,T=3 000 K时谱线强度比最大;并且谱线强度比相对波动对ΔET敏感,ΔE趋近于零时相对波动变小,T对谱线强度比相对波动影响变化不大,整体趋势平稳。在T=10 000 K时,ΔE<0相对波动比ΔE>0时小,因此理论上优先选择ΔE<0的谱线对。通过理论分析得出|ΔE|越接近于零,谱线强度比相对波动越小。实验装置中采用工作波长1 064 nm,脉冲能量85 mJ,重复频率1 Hz,脉冲宽度13 ns的Nd∶YAG脉冲激光诱导击穿样品;采用工作波长200~975 nm,光学分辨率优于0.05 nm的Andor公司Mechelle 5000光谱仪,配合Andor New iStar型号ICCD采集光谱;利用激光诱导铁基合金等离子体光谱进行验证。实验中,以Fe为内标元素,Cr和Mn为分析元素。筛选NIST谱线库中跃迁概率在106以上的谱线,并优先选择共振线能级差相近的非共振线进行对比分析。结果表明,选择激发能级相近或波长相近的谱线作为分析谱线的原则有一定的局限性。对于Cr和Fe,|ΔE|在0.14和1.51 eV时得到的谱线强度相对标准偏差(RSD)分别为6.7%和4.6%,其谱线强度比理论值和实际值之差分别为1.14和0.59;|Δλ|在11.7和50.8 nm时得到的RSD分别为6.3%和4.4%,其谱线强度比理论值和实际值之差分别为1.69和0.62。分析表明,相比于波长差,激发能级差对Cr/Mn相对波动影响较大。分析元素Cr/Mn与内标元素Fe波长差绝对值不断增大,RSD反而不断减小;在1.50 eV和90 nm较大约束范围内,|ΔE|大的谱线得到的谱线强度比相对波动相对较小,Cr和Fe的RSD最大相差为2.06%;|Δλ|大的谱线得到的谱线强度比相对波动相对较小,Cr和Fe的RSD最大相差为1.35%。由以上实验结果得出,在实际选择分析谱线时,尽量选择激发能级和波长相近的谱线原则有一定的局限性。|ΔE|或|Δλ|大的谱线得到的RSD较小,选择谱线强度比理论值和实际值最接近的谱线可以作为谱线选择依据。另外,选择谱线强度比理论值和实际值最接近的谱线,可以降低谱线强度比相对波动。  相似文献   

12.
Time‐resolved Raman spectroscopy, spatially offset Raman spectroscopy and time‐resolved spatially offset Raman spectroscopy (TR‐SORS) have proven their capability for the non‐invasive profiling of deep layers of a sample. Recent studies have indicated that TR‐SORS exhibits an enhanced selectivity toward the deep layers of a sample. However, the enhanced depth profiling efficiency of TR‐SORS, in comparison with time‐resolved Raman spectroscopy and spatially offset Raman spectroscopy, is yet to be assessed and explained in accordance to the synergistic effects of spatial and temporal resolutions. This study provides a critical investigation of the depth profiling efficiency of the three deep Raman techniques. The study compares the efficiency of the various deep Raman spectroscopy techniques for the stand‐off detection of explosive precursors hidden in highly fluorescing packaging. The study explains for the first time the synergistic effects of spatial and temporal resolutions in the deep Raman techniques and their impact on the acquired spectral data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Spatially offset Raman spectroscopy (SORS) is a technique that can obtain subsurface layered information by collecting Raman spectra from a series of surface positions laterally offset from the excitation laser. Currently optical fiber probes are used as major tools in SORS measurement, which are either slow (single fiber probe with mechanical movement) or restricted in selecting offset range and interval (fiber probe array). This study proposes a new method to conduct SORS measurement based on a newly developed line‐scan hyperspectral Raman imaging system. A 785‐nm point laser was used as an excitation source. A detection module consisting of an imaging spectrograph and a charge‐coupled device camera was used to acquire line‐shape SORS data in a spectral region of −592 to 3015 cm−1. Using a single scan, the system allowed simultaneous collection of a series of Raman spectra in a broad offset range (e.g. 0–36 mm in two sides of the incident laser) with a narrow interval (e.g. 0.07 mm). Four layered samples were created by placing butter slices with thicknesses of 1, 4, 7, and 10 mm on top of melamine powder, providing different individual Raman characteristics to test the line‐scan SORS technique. Self‐modeling mixture analysis (SMA) was used to analyze the SORS data. Raman spectra from butter and melamine were successfully retrieved for all four butter‐on‐melamine samples using the SMA method. The line‐scan SORS measurement technique provides a flexible and efficient method for subsurface evaluation, which has potential to be used for food safety and quality inspection. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Spatially offset Raman spectroscopy (SORS) is currently being developed as an in vivo tool for bone disease detection, but to date, information about the interrogated volume as influenced by the light propagation and scattering characteristics of the bone matrix is still limited. This paper seeks to develop our general understanding of the sampling depths of SORS in bone specimens as a function of the applied spatial offset. Equine metacarpal bone was selected as a suitable specimen of compact cortical bone large enough to allow several thin slices (600 µm) to be cut from the dorsal surface. Photon migration at 830‐nm excitation was studied with five bone slices and a 380‐µm‐thin polytetrafluoroethylene (PTFE) slice placed consecutively between the layers. To optimize Raman signal recovery of the PTFE with increasing depth within the bone stack required a corresponding increase in spatial offset. For example, to sample effectively at 2.2‐mm depth within the bone required an optimal SORS offset of 7 mm. However, with a 7‐mm offset, the maximum accessible penetration depth from which the PTFE signal could be still recovered was 3.7 mm. These results provide essential basic information for developing SORS technology for medical diagnostics in general and optimizing sampling through bone tissue, permitting a better understanding of the relationship between the offset and depth of bone assessed, in particular. Potential applications include the detection of chemically specific markers for changes in bone matrix chemistry localized within the tissue and not present in healthy bone. © 2015 The Authors. Journal of Raman Spectroscopy published by John Wiley & Sons, Ltd.  相似文献   

15.
磁约束等离子体中杂质(特别是高Z杂质)的存在将大大增强等离子体辐射功率损失,破坏等离子体的约束性能。杂质行为的定量研究首先要求对杂质测量的光谱诊断系统进行绝对强度标定,获得灵敏度响应曲线。介绍了EAST托卡马克上的快速极紫外光谱仪系统绝对强度的原位标定方法。在波长范围20~150Å内,通过对比极紫外(EUV)波段连续轫致辐射强度的计算值和测量值得到光谱仪的绝对强度标定。在此过程中,首先由(523±1) nm范围内可见连续轫致辐射强度的绝对测量值计算出有效电荷数Zeff,进而结合电子温度和密度分布计算EUV波段连续轫致辐射强度;EUV波段连续轫致辐射强度的测量值即为不同波长处探测器的连续本底计数扣除背景噪声计数值。对于较长波段范围130~280Å,通过对比等离子体中类锂杂质离子(Fe23+,Cr21+,Ar15+)和类钠杂质离子(Mo31+,Fe15+)发出的共振谱线对(跃迁分别为1s22s 2S1/2-1s22p 2P1/2, 3/2及2p63s 2S1/2-2p63p 2P1/2, 3/2)强度比的理论和实验值进行相对强度标定。其中共振谱线对强度比的理论值由辐射碰撞模型计算得到,模型中处在各个能级的离子数主要由电子碰撞激发,去激发以及辐射衰变三个过程决定。两种方法相结合,实现了光谱仪20~280Å范围的绝对强度标定。考虑轫致辐射、电子温度及电子密度的测量误差,绝对标定误差约为30%。在绝对标定的基础上,我们对杂质特征谱线强度进行绝对测量,并将测量结果与杂质输运程序结合ADAS(Atomic Data and Analysis Structure)原子数据库计算得到的模拟值进行比较,进而估算等离子体中的杂质浓度。  相似文献   

16.
提出了一种阵列式线-线沿面介质阻挡放电结构,利用双极性高压纳秒脉冲电源,在大气压空气中激励产生了相对大面积的放电等离子体。其中,高压电极、地电极均为圆柱形金属,放电反应器由20组相间排列的阵列式线型高压电极和套有介质管的阵列式线型地电极组成。利用电压探头、电流探头、示波器等测量了放电电压和放电总电流,并计算得出了放电的实际电流。利用光纤、光栅光谱仪、CCD等测量了波长范围在300~440 nm和766~778 nm的发射光谱,即氮分子第二正带N2 (C3Πu→B3Πg)包括Δν= +1, 0, -1, -2, -3、氮分子离子第一负带N+2(B2Σ+u→X2Σ+g),N2 (B3Πg→A3Σ+u)和O (3p5P→3s5S2)的发射光谱。比较了氮分子第二正带N2 (C3Πu→B3Πg)的各个振动峰和各个活性物种的发射光谱强度,以及这些发射光谱强度随着脉冲峰值电压的变化。测量了N2(C3Πu→B3Πg, 0-0)的二次、三次衍射光谱,与原始光谱在转动带、背景光谱等方面进行了比较,并计算了二次衍射和原始光谱之间的峰值比。利用氮分子第二正带N2 (C3Πu→B3Πg, Δν=+1, 0, -1, -2)和氮分子离子第一负带N+2 (B2Σ+u→X2Σ+g, 0-0)模拟了等离子体的转动温度和振动温度,对模拟结果进行了比较,并研究了脉冲峰值电压对等离子体振动温度和转动温度的影响。通过测量放电的电压和计算得到的放电电流发现,当脉冲峰值电压为22 kV,脉冲重复频率为150 Hz时,阵列式线-线沿面介质阻挡放电的放电电流在正脉冲、负脉冲两个方向上均可达75 A左右。通过诊断放电等离子体的发射光谱发现,在测量的波长范围内,放电产生的活性物种主要有氮分子第二正带N2 (C3Πu→B3Πg)、氮分子离子第一负带N+2(B2Σ+u→X2Σ+g),N2 (B3Πg→A3Σ+u)和O (3p5P→3s5S2)。在脉冲峰值电压22~36 kV的变化范围内,氮分子第二正带N2(C3Πu→B3Πg, 0-0)的发射光谱强度始终保持最强,N2 (B3Πg→A3Σ+u)次之,而氮分子离子第一负带N+2(B2Σ+u→X2Σ+g)和O (3p5P→3s5S2)的发射光谱强度较弱。同时,当脉冲峰值电压升高时,氮分子第二正带N2 (C3Πu→B3Πg)的所有振动峰,以及氮分子离子第一负带N+2(B2Σ+u→X2Σ+g),N2 (B3Πg→A3Σ+u)和O (3p5P→3s5S2)的发射光谱强度均随之升高。通过比较氮分子第二正带N2(C3Πu→B3Πg, 0-0)的原始、二次衍射、三次衍射光谱发现,二次、三次衍射光谱的转动带更清晰,但三次衍射光谱的背景更强,因此氮分子第二正带N2(C3Πu→B3Πg)的二次衍射光谱更有利于模拟等离子体的转动温度。通过比较模拟得到的振动温度和转动温度发现,氮分子第二正带N2 (C3Πu→B3Πg, Δν=-2)在N2 (C3Πu→B3Πg)四个谱带Δν=+1, 0, -1, -2中最适于模拟等离子体振动温度,而利用氮分子离子第一负带N+2 (B2Σ+u→X2Σ+g,0-0)模拟得到的等离子体转动温度要比N2 (C3Πu→B3Πg, Δν=-2)的模拟结果高约10~15 K。同时,当脉冲峰值电压升高时,由N2 (C3Πu→B3Πg, Δν=-2)和N+2 (B2Σ+u→X2Σ+g, 0-0)模拟得到等离子体的转动温度均出现了略微上升的趋势,而利用N2 (C3Πu→B3Πg, Δν=-2)模拟得出的振动温度则略微下降。  相似文献   

17.
铜原子能级结构的理论计算具有非常大的挑战性。本文基于多组态Dirac-Hartree-Fock(MCDHF)方法和相对论组态相互作用(RCI)方法,通过三个大规模的关联模型计算了单激发态3d104p 2P1/2、双激发态3d94s(3D)5s4D3/2,1/2,3d94s(3D)5s 2D3/2,3d94s(1D)5s 2D3/2以及离子态3d10 1S0能级和波函数。结果表明,铜原子能级结构对有限组态空间的选择极其敏感,双激发态3d94s(3D)5s 4D3/2,1/2,3d94s(3D)5s 2D3/2,3d94s(1D)5s 2D3/2和离子态3d10 1S0与单激发态之间的能量差相对于已有实验结果均存在大约-0.4 eV的偏差,而计算得到的共振电子能量与实验结果符合得较好。此外,根据辐射跃迁矩阵元和非辐射跃迁矩阵元计算了双激发态的Fano参数q,并基于Fano理论得到了铜单激发态3d104p 2P1/2的总光电离截面,该理论考虑了直接光电离与光激发自电离之间的干涉效应,即共振3d94s(3D)5s 4D3/2,1/2、3d94s(3D)5s 2D3/2和3d94s(1D)5s 2D3/2具有明显的非对称的Fano轮廓,表明光电离过程与光激发自电离过程之间的干涉对双激发态共振附近的光电离截面轮廓有着极其重要的影响。  相似文献   

18.
The study compares and contrasts conventional confocal Raman microscopy/spectroscopy (CRM) with a recently developed micrometer scale defocusing spatially offset Raman spectroscopy (micro‐SORS), a method providing a new analytical capability for investigating non‐destructively the chemical composition of subsurface, micrometer‐scale‐thick diffusely scattering layers at depths beyond the reach of CRM. Because of close similarities between the two techniques and comparable embodiment of the instrumentations, but radically different interpretations of data, it is crucially important to recognise which type of method is pertinent to a specific measurement. The distinction comes principally from the nature of sample, whether turbid (micro‐SORS measurement) or transparent (CRM measurement) on the spatial scale of the axial (z‐)scan of the measurement. Which type of sample one deals with may not always be easily recognisable with micro‐scale thick layers, and the study therefore also presents a simple method for suggesting whether CRM or micro‐SORS methodology applies. This test relies on an axial (z‐)scan performed through the sample in both the positive and negative directions from the normal, imaged sample surface position using conventional CRM instrument. The absence or presence of symmetry or asymmetry of the intensity profiles of measured Raman signals around the imaged sample surface position as a function of sample axial displacement then suggests which interpretation could apply. The study paves a way for the development of micro‐SORS as a widely applicable analytical tool deployable on conventional Raman microscopes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号