首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
重金属铜胁迫下玉米的光谱特征及监测研究   总被引:1,自引:0,他引:1  
农作物重金属污染监测是当今高光谱遥感研究的重要内容之一,旨在设计一种新的窄带植被指数,以实现不同培育期的两种玉米品种的重金属铜胁迫监测。研究设计了不同浓度的铜污染实验,采用SVCHR-1024I型高性能地物光谱仪测量不同浓度铜离子(Cu2+)胁迫下玉米叶片的光谱反射率,并同步获取了玉米叶片中Cu2+含量数据。首先,对玉米叶片原始光谱数据进行一阶差分处理,并计算一阶差分反射率与叶片中Cu2+含量的相关系数(r),筛选对铜胁迫敏感的波段。计算结果显示,489~497,632和677 nm波长附近的一阶差分反射率与叶片中Cu2+含量显著相关,可将其视为敏感波段。其次,根据以上3个敏感波段,建立基于一阶差分反射率的铜胁迫植被指数(dVI)。对所有可能的dVIs和Cu2+含量进行一元回归分析,并采用决定系数(R2)和均方根误差(RMSE)对回归结果进行评估,以筛选最佳指数。最后,采用不同生长年份的玉米实验数据对敏感波段的稳定性及dVI的适用性进行了验证评估;同时,通过与归一化植被指数(NDVI)、红边叶绿素指数(CIred-edge)、红边位置(REP)、光化学反射指数(PRI)等常规重金属胁迫植被指数进行应用比较,证明dVI更具有优越性。结果表明:一阶差分处理后,在450~500,630~680和677 nm波长处的叶片反射率与Cu2+含量的相关系数明显增大。基于一阶差分反射率的特征波段具有稳定性,对于不同生长年份的玉米叶片数据,特征波段的波长位置不变。一元回归分析结果表明,结合497,632和677 nm波长的一阶差分反射率的指数与Cu2+含量具有显著的相关性,对于不同生长年份的2种玉米品种数据集,R2都高达0.75以上。另外,与常规植被指数比较结果表明,该研究所提出的dVI具有更好的鲁棒性及有效性,可为冠层尺度的重金属胁迫监测提供理论基础。  相似文献   

2.
斑病害在全球玉米产区均有爆发,严重影响玉米产量与品质,是一种常见的叶类疾病。荧光光谱技术能够快速、无损、准确地反映作物生理信息,动态检测其逆境响应规律。以玉米为研究对象,基于荧光光谱和生理参数(SPAD和Fv/Fm)融合分析,探究玉米生理参数对不同程度斑病害的响应规律,构建荧光光谱反演模型。首先,利用相关分析与峰值分析筛选荧光光谱的敏感波段,采用多元散射校正(MSC)、标准正态变量变换(SNV)、多项式平滑(S-G)、 FD光谱一阶导数、 SD光谱二阶导数等5种预处理及MSC-SG-FD, MSC-FD-SG, SNV-SG-FD, SNV-SG-SD等4种建模组合方法,以相关系数R2和均方根误差RMSE为模型效果评价指标,确定荧光光谱反演生理参数模型的最优方法。结果表明:不同斑病害程度下荧光光谱特性的整体变化趋势一致,但强度差异显著,在波段600.000~800.000 nm内,光谱反射率会出现明显的峰中心,达到极值。在波段900.000 nm之后,反射率趋于平稳,特征明显减少。对于潜伏期叶片,SPAD与Fv/Fm的建模最优方法均为SNV-SG-FD,R  相似文献   

3.
利用高光谱反射率光谱的特征波段构建光谱指数,建立叶绿素含量反演模型是实现水稻生产精准调控和科学管理的必要手段之一。为了建立适用于拔节孕穗期水稻叶片叶绿素相对含量(SPAD)的高光谱反演模型,分别获取了拔节孕穗期水稻叶片的高光谱和SPAD数据,利用小波分析法对原始光谱反射率曲线进行降噪处理,并对基于积分运算的光谱指数NAOC进行简化,获得了基于双波段简化运算的优化光谱指数。利用相关分析法计算由原始反射率光谱R和数学变换光谱LgR、1/RR构建的优化光谱和变换光谱指数与水稻叶片SPAD的相关系数,获得了以积分限(a,b)为横、纵坐标的相关系数二维矩阵,并绘制相关性等势图,得到相关系数最高的3个波段组合:R(641,790)(0.872 6),R(653,767)(0.871 7)和R(644,774)(0.871 6),计算出20个原始样本中3个积分波段组合所对应的60个优化光谱指数值,按照2∶1的比例划分为建模集和验证集,建立了三种水稻叶片SPAD反演模型:偏最小二乘回归(PLSR)、支持向量机(SVM)和BP神经网络模型。结果显示:利用优化光谱和变换光谱指数建立的3种水稻叶片SPAD反演模型决定系数R2均大于0.79,归一化均方根误差NRMSE则小于5.4%。其中BP神经网络相对于其他两种模型具有较高的拟合度,预测精度也相对较高,建模集R2=0.842 6,NRMSE=5.152 7%;验证集R2=0.857,NRMSE=4.829 9%。总体来看,基于双波段简化运算后的优化光谱和变换光谱指数建立拔节孕穗期水稻叶片SPAD反演模型是可行的;对比分析3种模型反演结果发现,BP神经网络对水稻叶片SPAD的反演效果较好。该工作对提高拔节孕穗期水稻精准调控技术和建立水稻生产的科学管理体系具有一定的参考价值。  相似文献   

4.
水是植物正常生长发育必不可缺的元素之一,能够快速检测并获取植物叶片水分,对田间作物灌溉生产管理和作物的生理需水特性研究等具有重要的意义。利用RedEdge-M型号多光谱相机,以不同生育期的55组玉米叶片作为试验对象,在光线充足且无阴影遮挡的环境下对试验玉米叶片样本进行拍摄,拍摄过程中通过直连下行光传感器来消除太阳高度角对光谱反射的影响,每组玉米叶片样本经过拍摄可得到蓝、绿、红、近红外和红边等5个波段的TIFF图像。借助图像处理软件ENVI5.3构建玉米叶片样本兴趣区域(ROI),以ROI范围内玉米叶片样本的平均反射光谱作为该样本的反射光谱来减小镜头边缘减光现象带来的误差。参照标准白板出厂时提供的专属标定反射率、白板ROI范围内的平均反射光谱和玉米叶片样本白板ROI范围内的平均反射光谱,比值换算得到各组玉米叶片5个波段处的光谱反射率。同时利用YLS-D型号植物营养测定仪,采用五点取样法选择玉米叶片的5个区域测取玉米叶片样本的水厚度平均值作为叶片含水量的测量指标。随机选取43组玉米叶片样本得出的光谱反射率作为训练样本,采用BP神经网络建立基于多光谱图像的玉米叶片含水量反演模型,并融合莱文贝格-马夸特理论(Levenberg-Marquardt,L-M)进行经典神经网络现有缺点的改进。输入神经元数目为5个,即蓝、绿、红、近红外和红边等5个波段图像对应的反射率,输出神经元为1个,即玉米叶片含水量。剩余12组玉米叶片作为验证样本用于模型反演数据的相关性分析,结果表明,利用多光谱图像光谱信息并结合基于Levenberg-Marquardt方法改进后BP神经网络玉米叶片含水量反演模型,模型反演的拟合相关系数能达到0.896 37, 12组验证集中玉米叶片含水量参考值和反演值的相关系数r达到0.894 8,反演结果比较理想。可以实现对玉米叶片含水量的快速准确检测,对精准农业的推广和应用提供了方法和参考依据。  相似文献   

5.
烟煤病是我国南方热带、亚热带地区一种非常普遍的植物病害,对我国农业生产造成巨大危害,对其监测预报是实施有效治理措施的重要基础和依据。为建立以高光谱数据为基础的烟煤病严重程度反演模型,在重庆北碚城区采集50个银木叶片样本,利用ASD FieldSpec HandHeld光谱仪获取高光谱数据,通过数码相机和ENVI软件获取叶面积数据,将银木叶片烟煤病面积与整个叶片面积的比例作为烟煤病的严重程度,建立相关性最大波段的烟煤病反演模型,探究烟煤病严重程度与光谱曲线之间可能存在的关系。结果表明: 单叶尺度下,健康叶片在560 nm波段附近有明显的反射峰,随着烟煤病严重程度增大,反射峰逐渐消失, 在可见光与近红外波段,总体上光谱反射率与烟煤病病情严重程度呈负相关性。500~650和720~850 nm为烟煤病的光谱敏感波段,其中相关度最大值点为550 nm波段,相关系数达到-0.72。在烟煤病严重程度与叶片波段原始光谱信息及多波段组合关系研究中,单叶尺度下785 nm波段高光谱参数与烟煤病严重程度建立的回归模型的决定系数(R2)最大,为0.875。通过模型的显著性检验和预测精度检验, 785nm 处的光谱反射率建立的二次曲线模型为最优。证明在单叶尺度下,基于785 nm波段的二次曲线模型反演烟煤病的效果较为理想。  相似文献   

6.
叶片含水量是反映作物生理特性的一个重要参数,对生态环境的研究具有重要意义。采用小波分析方法,分析叶片含水量对反射率的影响特征,建立综合利用多波段信息的作物叶片水分含量反演模型。基于PROSPECT模型的辐射传输理论,推导出由叶片反射率光谱的小波系数反演叶片水分含量CW的理论模型。利用六种常用的小波函数,对叶片组分水、干物质和白化基本层的吸收光谱进行小波分解。选取对水分变化最敏感,同时对其他组分不敏感的分解尺度和波段位置,找到能稳定突出水的光谱特征的小波系数。结果表明:bior1.5小波函数在尺度为200 nm,波段位置为1 405和1 488 nm的小波系数具有上述特征。建立由叶片反射率光谱的bior1.5小波系数反演叶片水分含量CW的反演模型,模型有两个转换系数a和Δ都受叶片结构参数N的影响。利用PROSPECT模型生成模拟光谱数据集,校正建立的叶片水分含量反演模型中的两个转换系数a和Δ,并与LOPEX93实验光谱数据集结合验证反演模型。结果表明:反演模型不仅比传统基于植被指数的统计模型在精度上有提高(反演值与实测值的R2最高达到0.987),而且更加稳定,普适性更高。研究表明,小波分析方法在利用高光谱数据反演作物叶片水分含量方面具有独特的优势。  相似文献   

7.
玉米叶片的光谱响应及其氮素含量预测研究   总被引:7,自引:0,他引:7  
以不同施肥水平下两年玉米田间试验为基础,利用高光谱技术探讨大喇叭口期不同层次玉米叶片光谱响应的敏感区域,并依据叶片氮素含量与原始光谱反射率及其一阶导数的相关性,最终构建了叶片氮素含量的预测模型。结果表明:不同施肥水平下叶片光谱反射率差别明显区域集中在550 nm附近波段、761~1 300 nm波段,不同层次间叶片光谱反射率差别明显区域集中在550 nm附近波段,叶片氮素含量与470~760 nm波段光谱反射率及其一阶导数呈极显著相关。经过对比筛选,以光谱指数DSI(564,681)和DSI(681,707)构建的指数预测模型效果最好,预测精度达93.43%和93.39%,能有效估测叶片氮素含量。  相似文献   

8.
在滞尘影响下的植被叶片光谱变化特征研究   总被引:2,自引:0,他引:2  
为建立以高光谱数据为基础的叶片滞尘质量反演模型,沿北京市区采集了30个大叶黄杨叶片样本。利用电子分析天平和光谱仪(analytical spectral devices ASD FieldSpec Pro)测定“除尘前”与“除尘后”叶片质量及光谱反射率曲线,以获取叶片尘埃量、光谱信息等数据。随后以传统意义和偏最小二乘(PLS)回归模型为基础,以探究空气尘埃量与光谱曲线之间可能存在的关系,阐述了叶片尺度上尘埃量对植物光谱特征的影响。结果为:除尘前后叶片光谱曲线在350~700, 780~1 300, 1 900~2 500 nm波段区间内有较大差异,同时尘埃量与叶片单波段光谱反射率比值呈负相关,相关度最大值点为737波段,属于近红外波段,相关系数可达-0.8左右。在尘埃量与叶片光谱多波段组合关系研究中得到,948和945波段构成的NDVI指数与尘埃量的相关度最大,相关系数可达0.76。在叶片滞尘量反演研究中,对比传统意义滞尘量回归模型,引进的偏最小二乘算法(PLS)可使叶片滞尘量反演精度略有提高,最后由回归模型精度评定可得偏最小二乘法反演效果较传统回归好。  相似文献   

9.
盐胁迫下匍匐翦股颖高光谱分析与电解质渗透率反演   总被引:2,自引:0,他引:2  
叶片电解质渗透率是反映植物细胞渗透性的一个重要指标,对草坪草遭受盐胁迫的研究有重要意义。针对叶片电解质渗透率传统检测方法,耗时长,损伤叶片,无法大面积监测等弊端,探讨了用高光谱快速无损检测叶片电解质渗透率的方法。以匍匐翦股颖(Agrostis stolonifera)为对象,在温室中水培两周后进行浓度分别为0(对照),100和200 mmol·L-1的盐处理,7 d后按间隔7 d取样3次,共72个样。每次取样时先测量样品的光谱值,然后采用电导率法测定叶片电解质渗透率。分析匍匐翦股颖三种盐处理与光谱反射率之间的关系和差异,对三种盐处理的光谱反射率计算归一化植被指数和差值植被指数,采用差分法计算光谱反射率的一阶微分,同时计算出蓝、绿和红光的三边参数,分析叶片电解质渗透率与光谱反射率、归一化植被指数、差值植被指数和三边参数的相关性。利用叶片电解质渗透率和各光谱数据相关程度高的数据,对校正集采用一元线性回归、多元线性回归和偏最小二乘回归法构建叶片电解质渗透率反演模型,用预测集检验反演模型。结果表明:盐胁迫与叶片高光谱在450~700 nm波段呈正相关;叶片电解质渗透率与450~732 nm波段反射率在0.01水平上显著相关;三边参数中绿边幅值和绿边面积与叶片电解质渗透率显著相关;采用偏最小二乘回归法建立的反演模型精度最好,建模和反演预测的决定系数分别达到了0.681和0.758,均方根误差分别为7.124和7.079。偏最小二乘法构建的反演模型实现了盐胁迫下匍匐翦股颖叶片电解质渗透率的快速无损检测,也为采用高光谱实时监测盐胁迫对匍匐翦股颖及其同类植物的伤害提供了依据和理论参考。  相似文献   

10.
基于高斯回归分析的水稻氮素敏感波段筛选及含量估算   总被引:1,自引:0,他引:1  
水稻氮素含量的准确监测是稻田精准施肥的重要环节,水稻叶片氮素含量发生变化会引起叶片、冠层的光谱发射率发生变化,高光谱遥感是目前作物氮素无损监测的关键技术之一。以2018年-2019年湖北监利两年水稻氮肥试验为基础,分别获取水稻分蘖期、拔节期、孕穗期、扬花期、灌浆期五个生育期水稻叶片和冠层两个尺度的高光谱反射率数据及对应的叶片氮素含量数据,利用单波段原始光谱和一阶导数光谱的相关性分析、高斯过程回归(GPR)等方法筛选水稻全生育期叶片及冠层尺度氮素敏感波段。针对敏感波段,利用单波段回归分析、随机森林(RF)、支持向量回归(SVR)、高斯过程回归-随机森林(GPR-RF)、高斯过程回归-支持向量回归(GPR-SVR)和GPR构建水稻氮素监测模型,并进行精度对比,以确定水稻叶片在各生育期的氮素估算最佳模型。结果表明:GPR筛选的敏感波段符合水稻氮素含量及光谱变化的规律。相同条件下,叶片模型精度整体高于冠层模型。相关性分析模型中,叶片尺度原始光谱模型更好,冠层尺度刚好相反,冠层一阶导数光谱可以减弱稻田背景噪声的影响。其中,叶片最佳模型建模集R2为0.79,验证集R2为0.84;冠层最佳模型建模集R2为0.80,验证集R2为0.77。与相关性回归分析模型相比,机器学习模型受生育期影响小(R2>0.80,NRMSE<10%)。其中,RF比SVR更适合对GPR敏感波段建模,GPR-RF模型可以用1.5%左右的波段达到RF模型使用全部波段的精度。五种方法中,GPR模型对生育期敏感度最低、叶片及冠层尺度效果都很好(R2>0.94,NRMSE<6%)。且与其他四种机器学习方法相比,GPR模型可有效提高冠层氮素含量估算的精度和稳定性(R2增加0.02,NRMSE降低1.2%)。GPR方法可为筛选作物氮素高光谱敏感波段、反演各生育期叶片及冠层氮素含量提供方法参考。  相似文献   

11.
红色系矿物颜料曾被艺术家们大量地使用在古画和古建筑上.正确地识别出不同种类的红色系颜料对于文物监测与修复具有重要意义.传统的颜料识别主要依靠化学分析,不仅识别速度慢、识别范围小,而且对文物进行取样操作会造成文物的永久损伤.高光谱技术对颜料进行无损识别可以很好地解决这些问题.选用辰砂、胭脂、银朱、朱膘、朱砂、赭石、赭粉、...  相似文献   

12.
重金属铜离子(Cu2+)与铅离子(Pb2+)污染对玉米叶片光谱的影响微弱、隐蔽而难于探测。研究中设置不同浓度Cu2+, Pb2+胁迫的玉米盆栽实验,测定了玉米叶片光谱、叶片中Cu2+, Pb2+含量与叶绿素相对含量,分析了Cu2+, Pb2+污染胁迫下玉米叶片光谱响应特征,并选取480~670与670~750 nm范围来进行分析,在光谱维中定义了光谱微分差信息熵指数与在频率域中通过谐波分析提取了前三次谐波振幅(c1, c2与c3)指数,并用所定义的指数探测分别受Cu2+, Pb2+胁迫玉米叶片光谱微弱差异。实验结果表明,在480~670与670~750 nm范围内,玉米叶片中重金属离子浓度越大,其光谱微分差信息熵就越大;在480~670 nm波段,谐波分解后第一谐波振幅c1与第二谐波振幅c2可用于识别Cu2+, Pb2+污染程度;在670~750 nm波段,第一谐波振幅c1、第二谐波振幅c2与第三谐波振幅c3可用于识别Cu2+污染程度,而c2则可以识别Pb2+污染程度,污染胁迫越大振幅越大。在480~670与670~750 nm波段内,光谱微分差信息熵与前三次谐波振幅可作为识别玉米受Cu2+, Pb2+污染胁迫程度的指数,从光谱维与频率域两种维度来识别玉米受Cu2+, Pb2+胁迫程度的方法可行,文中定义的两类指数可稳健、可靠地探测与识别玉米受Cu2+, Pb2+影响所产生的光谱微弱差异,研究结果对利用高光谱来探测植被受重金属污染胁迫程度具有一定的参考价值。  相似文献   

13.
工矿业城市区域水质参数高光谱定量反演   总被引:1,自引:0,他引:1  
工矿业城市区域易受工业活动、矿产开采影响,使其水环境遭受不同程度的破坏,以至于水体污染问题突出。当前常规水质监测主要采用“以点代面”的工作方式进行野外采样及其室内化验分析,然而环境复杂多变,空间差异大,导致调查点代表性受限,整体精度不高,效率低下,更难以实现区域性动态监测。以因矿兴市的矿业重镇湖北黄石大冶市为研究区,同步开展无人机高光谱航飞、地面光谱测量和水体样品采集测试,分别获得具有49个波段的高光谱影像数据和光谱分辨率为1 nm的水体光谱曲线,其中影像数据波谱范围为505~890 nm,光谱分辨率为7.78 nm,空间分辨率为30 cm。对获取的高光谱影像和光谱数据剔除异常值、光谱定标、辐射校正等预处理后,对比分析研究区内水体的不同光谱吸收、反射及光谱曲线形态特征信息,从而提取出高光谱影像和测量光谱的反射光谱曲线形态特征、去包络线后光谱曲线形态特征、三阶求导后光谱曲线形态特征和光谱四值编码共四大类25个光谱特征。采用皮尔森相关系数分析样品水质参数与光谱特征之间的相关性,以此筛选出存在显著相关的水质参数与光谱特征。在此基础上,采用逐步回归分析方法筛选出最大反射率及其波长位置、对称度、光谱编码Ⅲ、三阶导最大及最小值等光谱特征作为模型变量,构建出水质参数的多元线性反演模型,并对模型进行F检验和t检验。将检验后的反演模型推广运用于研究区内高光谱影像,获得尾矿库、河流、湖泊等典型区域的水质参数反演结果,从而实现“由点到面”水质参数信息的快速获取。结果显示水质参数pH、硬度(Ca2++Mg2+)、钾与氯离子比值(K+/Cl-)、镁与碱度比值[Mg2+/(HCO3-+CO2-3)]的反演精度较高,其pH的判定系数R2最小为0.669,镁与碱度比值的判定系数R2最大为0.895,相对均方根误差均小于28%;而总溶解固体(TDS)反演精度较低,其判定系数R2仅为0.463,相对均方根误差达36.762%。提出了一种基于光谱曲线形态特征的高光谱遥感水质参数定量反演模型方法,实现了pH值、硬度、镁离子与碱度之比等水质参数的高光谱定量反演,为区域水环境动态监测提供了新方法。  相似文献   

14.
为了进一步深入研究不同形状和不同颜色珊瑚的光谱特征,选择三亚湾鹿回头海域两种常见造礁石珊瑚(褐色片状珊瑚:盾形陀螺珊瑚(Turbinaria peltata)和蓝灰色块状珊瑚:精巧扁脑珊瑚(Platygyra daeda))为样本进行测量和分析。于2015年7月22日上午采集两种珊瑚样品各7组。样品块大小~6 cm,并将其暂养于中国科学院海南热带海洋生物重点实验站岸基实验室珊瑚养殖缸,养殖缸内水温控制在~26 ℃。待样品块暂养≥4小时后用光纤光谱仪测量其反射率,光谱采集条件为无云遮挡的晴天。所用光纤光谱仪(海洋光学USB2000+),波段为200~850 nm,光谱分辨率1.34 nm,步长0.6 nm,视场角为25°。珊瑚样品置于缸内的平台上,过滤后恒温~26 ℃的海水持续注入以保证缸内水温恒定;多余的海水自动从养殖缸上壁溢出以排除因光线折射入水体后引起的“汇聚现象”;养殖缸内壁采用黑色尼龙布贴壁,以避免玻璃缸壁光线反射对测量结果的影响。光纤光谱仪的探头与样品间距保持在5 cm,每个样品重复测量10次取平均值以代表该样品的光谱反射率。测量光源为太阳光,每次测量前校正一次光谱仪,选用可见光波段的反射率光谱进行数据分析。反射率光谱导数分析可以放大光谱间的差异,四阶导数光谱法在提高检测灵敏度、改善分辨率和加强抗干扰力等方面具有独特的优点,故此对所测珊瑚光谱反射率数据进行反射率光谱数据一阶导数、二阶导数和四阶导数分析,根据盾形陀螺珊瑚和精巧扁脑珊瑚反射率光谱导数之间的差异确定两种珊瑚光谱的敏感可区分波段。分析结果发现,可见光范围内两种珊瑚反射率差异明显;后者反射率光谱明显高于前者,仅~700 nm出现类似较高反射率。盾形陀螺珊瑚反射率介于4%~15%之间,波峰和波谷明显。400~450 nm反射率相对较低约为4%~5%;480 nm后急升至~10%,502,578,604和652 nm附近为明显波峰;随后激增至700 nm的~36%。精巧扁脑珊瑚反射率介于6%~16%之间;400~420 nm波长附近反射率值相对较低,为~6%;420~470 nm急剧升高至~15%,486 nm附近出现宽大波峰,为该珊瑚的特征峰;486,577,607和650 nm处也存在四个明显波峰;随后剧增至700 nm的~37%。光谱反射率导数分析结果表明盾形陀螺珊瑚和精巧扁脑珊瑚可区分波段为:一阶导数483.7~492.6,496.2~500和533.5~540.5 nm。二阶导数414~422.7,499.4~504,520.2~523.3,534.2~536.6,557.5~561和671.8~675 nm。四阶导数414~417.6,427.4~430.3,433.4~436.5,452.3~455.5和657.1~659.1 nm。  相似文献   

15.
考虑水分光谱吸收特征的水稻叶片SPAD预测模型   总被引:1,自引:0,他引:1  
叶绿素是植被光合作用的重要色素,传统实验室方法测定叶绿素含量需破坏性取样且操作复杂。通过构建高精度SPAD光谱估算模型,可以实现对水稻叶片叶绿素含量的实时无损监测。以黑龙江省不同施氮水平下水稻为研究对象,采用SVC HR768i型光谱辐射仪共获取移栽后、分蘖期、拔节期、孕穗期、抽穗期共五个关键时期水稻叶片反射光谱数据。光谱探测范围350~2 500 nm。利用自带光源型手持叶片光谱探测器直接测定叶片光谱,光源为内置卤素灯。采用SPAD-502型手持式叶绿素仪同步测定水稻叶片的SPAD值。叶片水分是植物光合作用的基本原料,也间接影响着叶绿素含量。叶片含水量降低则会影响植物正常的光合作用,导致其叶绿素含量随之降低。因此将叶绿素敏感波段与水分吸收范围结合作为SPAD估算的输入量。随机森林模型是一个基于多个分类树的算法。算法在采样的过程中包括两个完全随机的过程,一是有放回抽样,可能会得到重复的样本,二是选取自变量是随机的。因此本文对叶片光谱反射率进行去包络线(CR)处理,综合考虑可见光近红外波段提取水稻叶片反射光谱特征参数和植被指数,综合分析光谱指标与SPAD相关关系,采用随机森林算法构建不同输入量的SPAD高光谱估算模型。结果表明: (1)水稻叶片SPAD与光谱反射率的相关系数在叶绿素敏感波段红波段范围(600~690 nm)、红边范围(720~760 nm)、水分吸收波段范围(1 400~1 490和1 900~1 980 nm)均为0.75以上;(2)在光谱参数与SPAD 的相关分析中,NDVI,DP2与水稻叶片SPAD值相关性最好,相关系数为0.811和0.808;(3)以结合水分光谱信息后的CR(V1, V2, V3, V4)为自变量所建立的随机森林模型精度最高,R2为0.715,RMSE为2.646,可作为水稻叶片叶绿素预测模型。研究结果揭示了不同品种水稻的光谱响应机制,提供了水稻叶片SPAD值高精度反演的技术方法,为监测与调控东北地区水稻正常生育进程提供技术支持。  相似文献   

16.
消费级近红外相机的水稻叶片叶绿素(SPAD)分布预测   总被引:2,自引:0,他引:2  
便捷可靠的作物营养诊断是作物科学施肥管理的基础,也是精准农业的核心。叶绿素含量是作物氮营养含量的重要指标。以水稻叶片为研究对象,用改造后的普通单反相机搭载滤波片的方式拍摄叶片的可见光和中心波长为650,680,720,760,850和950 nm多个波段的近红外图像,获取不同波段的相对反射率值,通过可见光与多个近红外波段结合的回归分析与比较,筛选出精度较高且稳定的模型。经过对比相机三个成像通道,R通道与叶绿素含量(SPAD值)的相关性要高于B和G通道。实验结果表明,植被指数GVI最能反映作物的生长状况,近红外波段760 nm对SPAD值的预测效果最好,最小二乘支持向量机法结合多个植被指数建模的预测精度R2为0.831 4,取得了较为理想的效果。同时使用高光谱成像仪采集水稻叶片的高光谱影像,对比消费级近红外相机成像方式下与高光谱成像方式下得到的植被指数多因子预测模型精度,两者相当。实验证明消费级近红外相机能够获得与高光谱成像仪相近的叶绿素含量估测结果。  相似文献   

17.
荒漠地区由于气候干燥,降水稀少,水分常成为制约植被生长的因素之一,水分胁迫对植物长势和产量的影响比任何其他胁迫都要大。随着高光谱技术的发展,国内外已有众多学者利用高光谱数据研究植被遭受胁迫作用,然而这些研究对象多集中于甜菜、棉花、玉米、水稻等作物,针对干旱区盐生植被遭受胁迫作用的研究较少。梭梭作为荒漠、半荒漠地区的典型盐生植被之一,具有极高的经济和生态效益。选择梭梭作为研究对象,培育一年生梭梭,并设置三个水分梯度,形成受不同水分量胁迫的梭梭。使用原始光谱、红边位置参数,结合植被指数及二维相关光谱研究其叶片光谱特征,为干旱区利用高光谱遥感监测盐生植被提供借鉴。结果表明:(1)分析梭梭叶片反射光谱曲线发现,在可见光至中红外各波段范围内,受不同水分量胁迫作用的梭梭叶片光谱反射率有显著差异。在可见光(350~610 nm)波段,各水分处理的梭梭叶片反射率依次为100 mL>500 mL>200 mL,这是由于100和200 mL水分促进梭梭内部叶绿素合成,使该波段反射率降低,而过多的水分(500 mL)对梭梭内部的叶绿素合成没有更大的促进作用。在红光区(611~738 nm),随着水分量的增多,受不同水分量胁迫的梭梭叶片光谱反射率依次减小。在738~1 181和1 228~1 296 nm波段,受不同水分量胁迫作用的梭梭叶片光谱反射率为:200 mL>100 mL>500 mL;在1 182~1 227 nm波段,受不同水分量胁迫作用的梭梭叶片光谱反射率为:100 mL>200 mL>500 mL。这是由于植被细胞结构对近红外区域的反射率影响较大,因而受不同水分胁迫作用的梭梭叶片光谱反射率有显著差异。在1 300~1 365和1 392~1 800 nm波段,受各水分胁迫作用的梭梭叶片反射率为:100 mL>200 mL>500 mL。这表明在500 mL水分胁迫量范围内,水分越多,叶子的细胞液、细胞膜对水分的吸收能力越强,使得反射率下降。通过对原始光谱求取一阶导数并提取红边位置参数发现,各水分处理下的梭梭叶片一阶微分光谱曲线中红边位置未发生移动。这是由于梭梭在长期的干旱环境影响下,形成了特殊的适应机制,水分对其红边位置影响不敏感。(2)选取若干植被指数分析各水分处理下的梭梭光谱指数变化。当水分胁迫量由100 mL增至200 mL时,WI/NDWI,MSI和NDII指数值变化显著,可用于研究水分胁迫下梭梭的光谱特征。(3)使用二维相关光谱技术分析受各水分胁迫作用的梭梭光谱特征,得出在100 mL水分胁迫下,在536,643,1 219和1 653 nm波段处,吸收峰对水分的微扰敏感;在200 mL水分胁迫下,在846和1 083 nm波段处,吸收峰对水分的微扰敏感;在500 mL水分胁迫下,在835和1 067 nm波段处,吸收峰对水分的微扰敏感。总之,在近红外波段,与100 mL水分量相比,梭梭受200和500 mL水分量胁迫时,吸收峰对水分的微扰敏感度上升。由100 mL水分胁迫下梭梭的二维同步相关谱图可知,1 044和1 665 nm,1 072和903 nm,903和1 264 nm,1 230和1 061 nm波段处形成正交叉峰,表明这些波段处光谱强度随水分的干扰同时变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号