首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 788 毫秒
1.
当前微流控表面增强拉曼散射(SERS)检测领域常用的贵金属纳米颗粒溶胶单位体积内热点区域数量有限且热点区域范围较小,而贵金属纳米三维阵列结构加工时间长,成本高昂并存在"记忆效应"。本文提出了集成到微流道的复合Ag/SiO_2正弦光栅SERS基底结构,可以利用激光干涉光刻技术进行制备,无需预制掩膜版,可实现大面积、低成本SERS基底简易快速制备。利用严格耦合波分析方法(RCWA)建立了复合正弦光栅表面电场增强数学评估模型,推导了表面等离子体共振(SPP)耦合吸收率数学模型,分析了入射光、复合正弦光栅结构与外界环境介电常数的优化匹配关系,得到了入射光785 nm条件下的最佳复合正弦光栅结构。通过制备加工并实验验证了复合正弦光栅的SERS性能,SERS增强因子(EF)能够达到10~4。  相似文献   

2.
采用多巴胺化学还原法制备了分散性良好的纳米金溶胶,并检测了其作为表面增强拉曼散射(Surface Enhanced Raman Scattering,SERS)基底的性质。粒度和透射电子显微镜测试结果表明金溶胶为平均粒径30nm左右的球形颗粒,并且紫外-可见特征吸收峰出现在520nm,为典型的金纳米颗粒特征吸收峰。以罗丹明6G(R6G)为探针分子证明了金溶胶良好的SERS增强效果,用金溶胶对除草剂敌草快(DQ)进行检测,最低检测限可达1×10-7 mol/L。结果表明所制备的金溶胶具有良好的表面增强拉曼散射活性。  相似文献   

3.
挥发性有机物(VOCs)检测在生命健康、食品安全及环境保护等领域都有着重要价值。表面增强拉曼散射(SERS)光谱是一种分子的指纹光谱,可以用于痕量气体及混合气体的快速检测。我们设计制备了纤维素纳米纤维@银纳米粒子@沸石咪唑酯骨架材料(CNF@Ag NPs@ZIF-8)SERS基底,表面修饰对氨基苯硫酚(PATP)后,通过醛基和氨基的席夫碱反应实现间接痕量醛类气体的SERS传感应用。结果表明,该基底能够实现苯甲醛(BA)的快速、高灵敏度检测,最低检测浓度为10 ppb,有望用于呼吸气体的成份分析,实现疾病的早期筛查与诊断。  相似文献   

4.
合成了海胆状金银复合纳米材料,并与球形金纳米材料混合作为表面增强拉曼活性基底实现了对水中高环多环芳烃的痕量检测。对海胆状材料进行表征,粒径大小约为300~400 nm,表面有40~100 nm明显的刺状凸起。与球形金溶胶混合后并优化pH值及混合比例等参数,产生了优于球形金溶胶2~3倍的增强效果。利用此增强基底检测了危害严重的高环多环芳烃污染物——芘(四环)、苯并蒽(四环)、苯并芘(五环),得到的光谱数据反映出混合SERS基底有良好的重复性和稳定性,对测得光谱进行特征峰归属分析,固体拉曼光谱与水溶液SERS光谱有确定的对应关系,并且在低浓度范围多环芳烃特征峰峰强与其水溶液浓度有良好的线性关系。经计算,芘(四环)、苯并蒽(四环)、苯并芘(五环)的检测限分别为0.44,2.92和1.64 nmol·L-1。该研究的创新点为合成了海胆金纳米颗粒,与球形金溶胶混合后制成新型高效SERS检测基底;选用自制高效SERS基底,实现了高环PAHs痕量检测。结果表明,利用该方法制备的活性基底,可实现对水中高环多环芳烃的痕量检测,为检测水中高环多环芳烃提供了实验室依据。  相似文献   

5.
采用表面增强拉曼光谱(SERS)技术结合快速样品前处理实现了叶用莴苣中苯醚甲环唑农药残留的快速检测。利用乙腈、氯化钠和无水乙酸钠提取叶用莴苣中苯醚甲环唑农药,N-丙基乙二胺、 C18和石墨化碳去除叶绿素、有机酸等物质的影响,以金纳米溶胶为增强基底,采集苯醚甲环唑标准溶液和净化提取液的SERS信号,建立农药残留样本的偏最小二乘(PLS)模型。结果表明,苯醚甲环唑的拉曼特征峰位于697、 808、 1 088和1 194 cm-1处,以此为依据,对叶用莴苣中苯醚甲环唑农药的最低检测浓度为0.252 mg·kg-1, PLS模型结果显示可用于叶用莴苣中苯醚甲环唑农药残留的预测。  相似文献   

6.
表面增强拉曼光谱技术在食品痕量化学危害检测中的应用   总被引:1,自引:0,他引:1  
表面增强拉曼光谱(surface-enhanced Raman spectroscopy, SERS)技术是基于被测分子吸附在某些经特殊处理、具有纳米结构的金属表面具有极强拉曼散射增强效应的分子振动光谱技术。因SERS技术具有前处理简单、操作简便、检测时间短、灵敏度高等优点,在食品安全检测领域具有良好的应用前景。食品中化学危害残留超标是主要的食品安全问题之一,已引起全球的关注,SERS技术对食品中痕量化学危害的分子识别及定量分析检测的相关研究报道数量近年来呈上升趋势。本综述概括了应用SERS对食品中常被检出的非法添加物、农药残留、抗生素及其他药物残留检测中的应用和研究进展,涉及的拉曼散射增强基底体系多种多样,如金或银等纳米溶胶体系、金纳米固体表面基底、双金属或磁性内核等复合基底。研究对象一般以化学危害物的标准溶液为起点,扩展到常被检出该化学危害物的相应食品中,如乳制品、鱼、果蔬等。由于表面增强拉曼散射强度受多种因素的影响,SERS谱图的重现性还是一个亟需解决的难题,而食品复杂体系中非目标组分对被分析物拉曼散射信号的干扰导致SERS技术还不能成为一种有效的常规快速分析方法,但SERS为食品及其他复杂体系中痕量化学物的检测提供了一个新的极具潜力的工具。  相似文献   

7.
表面增强拉曼(SERS)作为一种分析手段,具有高灵敏度、高选择性、高重复性、非破坏性等优点,在过去的几十年中,被广泛应用在成分检测、环境科学、生物医药及传感器等领域。其中以金、银等贵金属纳米颗粒薄膜在表面增强拉曼(SERS)活性基底方面得到了更为广泛的应用。SERS技术一个关键的因素是如何制设计并备具有大面积、高增强能力及高重复性、可循环使用的SERS基底。通常,贵金属纳米颗粒规则阵列结构的单元颗粒电磁增强特性及其颗粒间的电磁耦合增强特性的综合作用可大力提升SERS基底的探测性能。然而,利用传统微纳米加工方法如光刻、电子束光刻等方法制备得到的贵金属纳米阵列结构的表面粗糙度不够理想。结合光刻与化学置换方法制备金纳米颗粒四方点阵列孔洞结构,并研究其作为SERS基底的电磁增强特性。具体研究利用光刻法在硅衬底上制备了规则排列的四方点阵列孔洞结构,用磁控溅射在其表面镀上金属铁膜;接着在衬底上旋涂浓度为1.893 8 mol·L-1的氯金酸液膜,在孔洞内铁和氯金酸发生置换反应,进而孔洞生成金纳米颗粒,最终得到金纳米颗粒四方点阵SERS活性基底。采用罗丹明6G(R6G)分子作为探测分子测试不同金纳米颗粒阵列结构基底的SERS谱。实验结果表明,随着化学置换反应时间的延长,金纳米颗粒排列更加紧凑有序,SERS谱增强性能更好。  相似文献   

8.
为了快速检测水中痕量多环芳烃(PAHs),制备了一种高灵敏度的三维表面增强拉曼散射(SERS)基底。将GMA-EDMA多孔材料与参数优化的金纳米颗粒相结合,形成了高灵敏度三维SERS活性基底。相比仅用参数优化的金溶胶SERS基底,该三维SERS基底的信号强度有近一个数量级的增强,相比未调pH值的金溶胶基底,增强效果有2~3个数量级的提高,且具有良好的重复性,该基底内探测相对标准偏差(RSD)为4.78%~9.27%,基底间RSD为2.05%。利用该基底对三种较有代表性的多环芳烃菲、芘、苯并(k)荧蒽进行了SERS光谱探测,得到检测限分别为9.0×10~(-10),2.3×10~(-10),5.9×10~(-10) mol·L~(-1)。结果表明,这种检测方法操作简便、重复性好、灵敏度高,可以实现水中多环芳烃的痕量检测。  相似文献   

9.
农药残留严重影响人类身体健康与生命安全,故亟需建立一种简单高效的农药残留快速检测方法。本文以金纳米溶胶作为表面增强拉曼光谱(SERS)的增强基底,结合便携式拉曼光谱仪,实现了倍硫磷与对硫磷等常用有机磷农药的多靶标同时检测。结果表明倍硫磷和对硫磷分别在1053 cm~(-1),1216 cm~(-1)和857 cm~(-1),1112 cm~(-1)处具有特征拉曼谱峰,且两者互不干扰。同时进一步研究表明,倍硫磷和对硫磷的浓度与其特征拉曼谱峰强度线性相关,故可实现定量检测,其中倍硫磷检测限可达0.01μg/mL对硫磷检测限可达0.025μg/mL。同时,该SERS方法可直接用于菠菜实际样品中多种农药残留的多靶标快速检测,检测限达到0.05μg/mL。该SERS方法具有方便、快速、灵敏度高、多靶标同时检测等优点,有望实现农药残留的现场快速检测。  相似文献   

10.
表面增强拉曼光谱(surface-enhanced Raman scattering,SERS)能够有效解决常规拉曼中信号极弱问题,在低浓度分析物的痕量检测甚至单分子的检测中具有重要的应用前景,是化学、生物、环境等领域重要的分析手段。在SERS中,高性能SERS基底的实现是关键。本文以微球自组装技术为基础,制备了一种大面积、廉价、高效的SERS基底并对其进行了形貌表征和拉曼增强光谱研究。通过开展R6G分子的SERS研究发现,此种SERS基底对R6G拉曼散射信号的增强倍数是一般粗糙基底的五倍以上。结合数值模拟分析和系统的实验研究,得到了微球直径、纳米颗粒的高度等参数对基底表面附近局域热点和SERS增强倍数的影响规律,给出了最优化的SERS基底参数。本文工作可为SERS研究提供高性能的SERS基底。  相似文献   

11.
很多致命的疾病都与细菌感染密切相关,快速、准确地检测和鉴定细菌及微生物,一直是微生物学家及有关科研工作者追求的目标,拉曼光谱可以提供丰富的谱图信息,而表面增强拉曼光谱(SERS)有很高的检测灵敏度,然而一些贵金属SERS基底却容易使蛋白质变性,影响检测结果。以大肠杆菌(E.Coli)作为目标检测细菌,首先检测到大肠杆菌的拉曼光谱,之后采用两种不同的SERS基底(ZnO,Ag溶胶)进行检测。结果表明Ag溶胶基底有很强且较丰富的SERS信号,但是相对于E.Coli的本体拉曼谱峰有较大位移,说明与银溶胶相互作用的细菌存在一定的蛋白质变性过程;而ZnO纳米粒子与细菌作用的SERS信号虽然较弱,但是与E.Coli的本体拉曼信号较为相似,说明ZnO纳米粒子对E.Coli本体基本无损,这将有利于SERS在生物体系的无损检测。该结果可以为利用生物相容性好的半导体SERS基底进行细菌的检测提供有益的参考。  相似文献   

12.
茶叶是中国的主要经济作物之一,而在茶叶种植过程中存在农药不合理使用及滥用等行为,导致茶叶中存在严重农药残留问题。茶叶中农药残留检测主要采用经典化学实验室方法,存在前处理复杂、耗时长、成本高等缺陷,急需研究茶叶中农药残留的快速检测方法,以监管茶叶市场的质量安全。本论文采用纳米竹炭(NBC)为净化剂快速去除绿茶的色素等基质影响,使用表面增强拉曼光谱(SERS)方法分析绿茶中毒死蜱农药残留,建立绿茶中毒死蜱农药残留的SERS快速检测方法。采用不同NBC用量(0,15,20,25和30 mg)去除茶叶基质,比较不同NBC用量去除基质的净化效果和SERS谱图,得出最优NBC用量,并对前处理方法进行回收率实验,验证前处理方法的可靠性。结果表明,使用20 mg NBC能较好地净化绿茶中的色素等基质影响,前处理方法回收率实验表明,该净化剂用于绿茶中毒死蜱农药残留基质净化是可行的。采用密度泛函理论模拟毒死蜱分子理论拉曼光谱,对比毒死蜱分子理论拉曼光谱和实验拉曼光谱,对其官能团进行谱峰归属,得到定性定量分析绿茶中毒死蜱农药残留的5个特征峰:526,560,674,760和1096 cm-1。在0.28~11.11 mg·kg-1浓度范围内,以1096 cm-1的峰强度建立绿茶中毒死蜱农药残留线性分析方程y=0.0175x+0.9092,决定系数为R 2=0.9863,表明毒死蜱农药浓度与其特征峰强度之间具有良好的线性关系,方法的平均回收率在96.71%~105.24%之间,相对标准偏差(RSD)为2.36%~3.65%。该方法检测绿茶中毒死蜱农药的最低检出浓度约为0.56 mg·kg-1,单个样本检测时间在15 min内完成。研究表明,表面增强拉曼光谱技术结合净化剂前处理方法能快速检测绿茶中的农药残留。  相似文献   

13.
左旋咪唑是一种广谱抗虫药,被广泛应用于抗猪、牛等牲畜体内的线虫。同时左旋咪唑具有特殊的免疫调节作用,在动物养殖中常用于抗菌消炎、抗病毒、促生长等方面。当其被不合理使用时容易在禽畜肉中产生残留,目前常见的左旋咪唑检测方法为液相色谱法与气相色谱法,该类方法具有操作复杂、耗时长、成本高等缺点。表面增强拉曼光谱法具有分析速度快、检测灵敏度高和特异性好等优点,近年来被广泛应用于农残、兽残等物质的快速检测。为实现猪肉中左旋咪唑残留的快速检测,建立了一种猪肉中左旋咪唑残留的表面增强拉曼光谱快速检测方法。通过单因素实验,确定了金胶与样品溶液最佳体积比和最适积分时间分别为2∶1与20 s。通过比较不同萃取方法与萃取溶剂对猪肉中左旋咪唑盐酸盐残留量的提取效果,确定了正己烷液液萃取后离心、取上清液氮吹复溶的操作简单、耗时短的提取条件。通过密度泛函理论中B3LYP/6-311+G(d)基组对左旋咪唑盐酸盐理论光谱进行计算,在优化分子结构后进行频率与拉曼光谱计算,所得理论计算光谱与固体光谱、溶液光谱出峰情况具有较好的一致性。根据理论计算光谱、固体光谱与溶液光谱确定左旋咪唑盐酸盐的SERS特征峰并进行振动归属,得到469,627和969 cm-1处特征峰作为左旋咪唑盐酸盐的定量特征峰,其中469 cm-1为C—S键伸缩振动,627 cm-1为苯环C—C弯曲变形振动,969 cm-1为咪唑环面内弯曲和侧链骨架振动。在最佳实验条件下,建立了左旋咪唑盐酸盐标准溶液特征峰SERS信号与浓度的标准曲线,线性方程R2值均在0.9以上。对不同加标浓度的实际样品进行检测,得到平均回收率为80.39%~95.94%,RSD值为3.08%~6.20%。该法操作简便、稳定性好,无需对样品进行复杂的预处理即可实现对猪肉中左旋咪唑残留的快速准确测定。  相似文献   

14.
A unique, geometry‐optimized, surface‐enhanced Raman scattering (SERS) fiber‐optic sensor has been recently developed and built. Though this class of sensors can be very useful in many applications, their use is greatly hindered by the fact that their reusability can hardly be achieved because of the irreversible adsorption of the analyte molecules on the SERS‐active substrate. Different substrates have been tested on our sensor with the purpose of increasing its reusability by means of cleaning procedures or good reproducibility in manufacturing the sensor, keeping, however, the same enhancement. We show that a partial reusability of the sensor is possible using SERS‐active substrates prepared by a standard process of immobilization of silver nanoparticles with 3‐aminopropyltrimethoxysilane. We also show that a fairly good reproducibility can be achieved with a low‐cost substrate realized in a short time by depositing a layer of polyvinyl alcohol (PVA) containing silver nanoparticles on the etched fiber tip. We prove as well that measurements are possible even with nanoparticles dispersed in the analyte solution instead of using a substrate directly made on the sensor tip. Finally, we have successfully tested our sensor with some molecules cited in EFSA (European Food Safety Authority) and FDA (Food and Drug Administration) reports as molecules for which new detection methods are necessary. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
表面增强拉曼散射(SERS)以其无损、超灵敏、快速检测分析等优点而备受关注,在化学和生物传感等应用领域有着极大的潜力。研制灵敏度高、重复性强、稳定性好的SERS基底,对于实现其在痕量分析、生物诊断中的实际应用具有重要意义。具有微/纳米结构的聚合物具有优异的机械性能、光学性能、耐化学性等优点。通过模板压印法,利用多孔阳极氧化铝(AAO)在聚合物聚碳酸酯(PC)表面制备一种高度有序的纳米PC尖锥阵列结构,然后通过蒸发镀膜在PC尖锥阵列上沉积一层银膜,制备了大面积Ag纳米颗粒修饰的高度有序聚合物纳米尖锥阵列。高曲率纳米针状结构顶端的银颗粒及颗粒之间狭小的纳米间隙能产生大量的SERS"热点"。这种方法得到了均匀,可重复,大面积高增强的SERS活性基底,并进一步研究了不同沉积厚度银膜的SERS特性。用扫描电子显微镜(SEM)对其进行了表征,以结晶紫作为探针分子对这种结构进行研究。结果表明:拉曼信号强度随银厚度的增加显示为先增强后减弱的趋势。基底对结晶紫的拉曼增强因子达到5.4×10~6,基底主要拉曼峰强度的RSD为10%,说明该基底具有很好的检测灵敏性和重复性。此外,基底在存放40 d后,在相同条件下仍然保持着高SERS性能,表现出很好的稳定性。整个制备过程简单易行,重复性好,制作成本非常低廉,而且能够规模化制备,可方便地作为活性基底应用于SERS研究,必将具有广阔的研究和应用前景。  相似文献   

16.
采用金胶颗粒作为活性基底,氯化钠溶液作为活性剂,并采用表面增强拉曼光谱(SERS)技术建立一种检测鸭肉中萘夫西林残留的检测方法。首先分析了奈夫西林水溶液的SERS特征峰及其归属。然后分析了奈夫西林在鸭肉提取液中的SERS特征峰,确定了鉴定鸭肉中奈夫西林残留的拉曼特征峰,并选取521与1 449 cm-1处的拉曼峰强度进行条件的优化。最后应用内标法对鸭肉提取液中萘夫西林的残留量进行定量分析。结果表明,鸭肉提取液中萘夫西林的质量浓度范围在0.2~10 mg·L-1 时,应用拉曼峰强度比值所建立的四种标定曲线均具有良好的线性关系,决定系数均大于0.95。其中三种标定曲线具有较高的准确度,其回收率介于88%~144%。由此可见,应用SERS检测鸭肉中萘夫西林的残留是可行的,该方法简便、快速,为检测禽肉类食品中萘夫西林的残留提供了技术支持。  相似文献   

17.
多种农药,包括孔雀石绿(MG)作为禁用兽药,存在食用致癌的风险。由于MG低廉的价格和极好的药效,在渔业养殖中一直被不法商贩非法使用,使得鱼类生鲜中时有MG残留检出。针对MG分子痕量残留的检测,目前一般是抽取少量养殖水样,再利用高效液相色谱柱、液相色谱-光谱等方法来评估其是否超标。这类传统的检测方法一般需要依赖价格昂贵的大型设备,且检测过程操作繁琐复杂,单次检测耗时长、价格高,因而与农贸市场中商品流通量大、速度快、价格需亲民低廉等特点和要求不相符合。近年来,表面增强拉曼散射(SERS)检测技术以及便携式拉曼光谱仪的出现,有望实现对痕量农药分子的现场快速检测,进而很好地解决这一问题。SERS检测技术利用金属纳米结构的表面等离激元效应感应位于其结构表面附近的分子,得到分子种类和浓度信息。为了降低可检测的浓度极限,一般会在SERS基底上利用咖啡环效应或其他手段将待测分子蒸发富集,以获得足够高的信号强度。针对亲水基底,液滴与基底相接触后,会在基底表面摊开,使其分布面积扩大,导致其咖啡环周长变长,分子分布浓度随之降低。而当采用疏水基底富集时,由于常规的疏水基底表面黏附性小,液滴在其表面处于随处滚动无法抓取的状态,极大增加了操作的难度。以MG分子痕量残留的检测为例,由于农贸市场人员众多、无专业实验平台,磕碰撞击时有发生,在此环境下采用疏水SERS基底对农药分子进行检测显然是不可取的。该研究提出一种基于超疏水高黏附纳米森林结构的SERS基底用于痕量MG分子的快速现场检测。相比于超疏水SERS基底,所提出的超疏水高黏附基底利用其高黏附性可牢固抓取待测液滴,解决了以往超疏水基底在实际现场检测中存在液滴滚动无法操作的问题。此外,与亲水基底相比,超疏水高黏附基底由于接触角大,可将咖啡环面积缩小5.73倍,继而使分子的富集浓度提高5.73倍,最终使检测极限浓度降低了至少两个数量级。研究所提出的超疏水高黏附SERS基底有望在痕量农药分子快速现场检测中得到应用。  相似文献   

18.
真菌是一种广泛存在于自然界的病原微生物,具有细胞核、细胞壁等结构,可以引起动、植物和人类的多种疾病。真菌感染是临床上常见的感染性疾病之一,使得近年来针对真菌的高效检测及真菌相关领域的研究备受关注。目前真菌的传统检测方法主要有培养、镜检与分子生物学检测法等,均具有操作复杂、耗时等缺点。表面增强拉曼散射(SERS)技术以其不受水分子干扰、能反应分子指纹信息、检测迅速等特点在真菌的检测与鉴别领域逐渐发挥出明显的优势。在简要介绍真菌的结构特点及真菌常用的检测方法基础之上,主要针对拉曼光谱(Raman spectrum)/SRES技术在真菌检测和鉴别中的应用进行调研和讨论。首先通过对Raman/SERS技术的特点以及真菌的结构特征进行解析,根据调研Raman/SERS技术用于真菌检测的相关文献,分析了SERS技术用于真菌检测的可行性,提出SERS技术在真菌检测时会面临检测灵敏度低、信号复杂、选择性和特异性差以及信号重现性和稳定性不佳等难点。为解决以上难题,分析了SERS的增强模式,重点针对SERS的纳米增强介质材料、SERS标签(SERS tag)的信号放大效应以及SERS光谱分析技术与微流控芯片分析技术结合等SERS分析新进展,予以了系统地综述和讨论。通过纳米材料选择和纳米微结构的构建,SERS增强介质所产生的SERS增强效应在真菌鉴别以及临床疾病快速诊断中显示出巨大的发展潜力;基于SERS tag产生的信号放大机制,可以有效提高真菌SERS检测的灵敏度、特异性和重现性;在微流控芯片中设计和集成SERS增强纳米微结构,构建基于SERS tag 的信号放大策略,开展针对真菌的快速高效测试方法研究,更有望实现真菌样本的高通量及高内涵SERS检测,其在真菌的鉴别和检测上显示出巨大的研究价值和应用前景。  相似文献   

19.
Nanoparticles of noble metals, such as gold and silver, exhibit unique and tunable optical properties on account of their surface plasmon resonance. In particular, gold nanoparticles on silicon substrates are attractive for future nanoscale sensors and optical devices due to their resistance to oxidation and due to their electrical and optical properties. In this study, we developed a nanostructured gold/macroporous silicon (Au/PS) substrate capped with 11-mercaptoundecanoic acid (11-MUA) with ultra-sensitive detection properties achieved in characterization, an approach based on surface-enhanced Raman scattering (SERS). Surface-enhanced Raman scattering allows us to detect substances at a low concentration level and to observe structural details of a thiol molecule bonded to small film thicknesses. Raman measurements were carried out at 514 nm and 785 nm. In order to emphasize the effect of the Si microstructuration on the efficiency of this new substrate (Au/PS) proposed for SERS experiments, the same molecule (11-MUA) was adsorbed on it as well as on gold/atomically flat silicon (Au/Si) and on commercial Klarite (Mesophotonics) substrates. Systematic studies realized by Raman spectroscopy, electron microscopy, and X-ray spectroscopy show the influence of silicon substrate texturing and metallic deposition conditions, including time and temperature on the optical phenomena.  相似文献   

20.
In this paper, the fabrication of an active surface‐enhanced Raman scattering (SERS) substrate by self‐assembled silver nanoparticles on a monolayer of 4‐aminophenyl‐group‐modified glassy carbon (GC) is reported. Silver nanoparticles are attached to the substrate through the electrostatic force between the negatively charged silver nanoparticles and the positively charged 4‐aminophenyl groups on GC. The active SERS substrate has been characterized by means of tapping‐mode atomic force microscopy (AFM), indicating that large quantities of silver nanoparticles are uniformly coated on the substrate. Rhodamine 6G (R6G) and p‐aminothiophenol (p‐ATP) are used as the probe molecules for SERS, resulting in high sensitivity to the SERS response, with the detection limit reaching as low as 10−9 M . This approach is easily controlled and reproducible, and more importantly, can extend the range of usable substrates to carbon‐based materials for SERS with high sensitivity. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号