首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
应用近红外光谱技术对子宫内膜组织病理切片进行快速无损检测。收集了154样品光谱,其中正常样本的个数36个,增生的60个,癌变的58个。由于原始光谱中包含大量干扰信息,所以光谱预处理方法和波段选取的方法在近红外光谱分析中占有非常重要的地。利用多种预处理方法,包括一阶导数、多元散射校正、多项式最小二乘拟合求导、标准归一化、平滑、移动窗口中值滤波,对样品光谱进行了预处理。利用标准偏差谱来选取最优波段,选取的最优波段范围为4 000~6 000 cm-1。然后用处理后的光谱数据进行主成分分析,分类准确率达到100%。研究结果表明近红外光谱技术结合化学计量学方法可以作为一种癌症快速诊断的新技术,对于癌症的早期诊断和癌症组织的恶化过程研究具有重要的意义。  相似文献   

2.
通过H2S与杂多化合物(NH4)4H2[PM 9V3O40]·10H2O在DMF中反应合成了其硫代产物,并对其进行了红外和拉曼光谱表征.  相似文献   

3.
ALICE光子谱仪光子判别能力模拟研究   总被引:1,自引:0,他引:1  
光子判别能力是ALICE光子谱仪PHOS的重要性能指标之一. 利用ALIROOT软件包对0.5—100 GeV能量范围随机分布的7种粒子n, p,π+, K+和γ入射到PHOS上时光子判别的效率和纯度进行模拟研究. 在簇射形状分析中, 采用主成分分析方法将7参数分析问题约简为2参数, 并与7参数拓扑分析结果进行了比较. 给出了不同能区中光子判别效率与纯度的关系.The photon discrimination power of the ALICE photon spectrometer is simulated for incident particles n, p,π+, K+and γ with random energy distribution in the range from 0.5 to 100 GeV. The pricipale component analysis method is used to reduce the number of parameters in the shower shape analysis, and the results are compared with that from the seven parameter topology analysis.The efficiency dependence of purity for the photon discrimination is obtained for the deposited energy range 0.5—10, 10—20, 20—50 and 50—100 GeV.  相似文献   

4.
甲醇汽油因其辛烷值高、成本低等优势成为新型化石燃料替代物,其甲醇含量的精确检测是决定其品质的重要环节,甲醇汽油组分的精确定量检测与分析对于缓解我国传统石油资源短缺但需求量增多的现状具有重大的现实意义。甲醇汽油中甲醇检测的常规方法如酒醇仪测定法、速测盒测定法等,操作复杂,准确定性低。近红外光谱分析具有测量速度快、灵敏度高、可连续测量等诸多优点,在石油化工领域定性、定量分析中具有巨大应用潜力。为研究甲醇汽油近红外光谱无损定量检测方法,配制了0.5%~30%组分的甲醇汽油标准样品,设计了甲醇汽油近红外光谱数据采集系统并采集60个组分的甲醇汽油近红外光谱数据;利用移动平均平滑法、 S-G卷积平滑法(Savitzky-Golay)和多元散射校正(MSC)对甲醇汽油近红外光谱数据进行预处理分析,研究了BP人工神经网络(ANN)和主成分回归(PCR)模型的决定系数和均方根误差,对两种算法的结果和预测效果进行对比。结果显示:各模型的均方根误差均小于1%, SG平滑-主成分回归预测模型拟合度最好,其决定系数为0.998 98;基于SG卷积平滑算法和神经网络算法建立的模型预测值与真值偏差最小,其均方根误差...  相似文献   

5.
基于近红外光谱和模式识别技术鉴别大米产地的研究   总被引:4,自引:0,他引:4  
利用近红外光谱和模式识别技术建立了大米产地的快速鉴别方法。首先对119个地理标志产品响水大米和90个其他产地的大米(即非响水大米)的近红外光谱进行一阶导数和平滑处理,利用主成分分析法(PCA)对数据进行降维,通过前三个主成分的载荷图确定了相关性最大的特征波段(7 700~6 700 cm-1与5 700~4 300 cm-1)。在全波段内,凝聚层次聚类和Fisher’s判别鉴别方法都可以100%正确的鉴别响水大米和非响水大米;对于非响水地区的大米的具体产地判别,聚类分析正确率为91.9%,Fisher’s判别分析方法的正确率为96.7%。同时,在特征波段内,对大米产地聚类分析的准确度高于全波段范围内分析结果,说明选取的特征波段具有较强的代表性,是优化模型的有效方法之一。  相似文献   

6.
近红外光谱技术对闽南乌龙茶品种的识别研究   总被引:2,自引:0,他引:2  
采用近红外光谱技术建立了一种快速无损的乌龙茶品种识别方法。收集闽南地区不同茶场中铁观音、黄金桂、本山、毛蟹与梅占等5个品种共210份具有代表性的乌龙茶样品,采集近红外光谱数据,选用1 100~1 300nm,1 640~2 498nm作为检测波长范围,利用主成分分析法(principal component analysis,PCA)建立模型,并在实验过程中比较多元散射校正(multiplicative scatter correction,MSC)与标准正态变量校正(standard normal variate,SNV)两种数据预处理方法对模型的影响。实验结果表明,多元散射校正对模型的影响优于标准正态变量校正,对校正集的识别准确率达到了96%,对预测集中样品的识别准确率达到了90%。实验结果证明了采用近红外光谱技术可以快速无损识别闽南地区乌龙茶,具有较强的实用价值和推广价值。  相似文献   

7.
稻谷在储藏和运输过程中,在适宜的温湿度环境下极易发生霉变,导致大量的粮食浪费和巨大的经济损失,进而影响粮食安全.为解决传统的稻谷霉变检测存在的繁琐且耗时较长等不足,提出了基于近红外光谱图像处理和神经网络的稻谷霉变程度检测方法.首先,通过农业多光谱相机(Sequoia)和固定光源等设备,构建了霉变稻谷近红外图像数据采集平...  相似文献   

8.
为探究一种快速、可靠的肉苁蓉属中药材检测方法,实验采用荧光光谱成像技术结合模式识别方法对肉苁蓉属三种中药材:荒漠肉苁蓉、管花肉苁蓉和沙苁蓉进行鉴别研究。实验中发现肉苁蓉样品存在较显著的荧光特性,采集来自不同产地、不同批次以及不同超市购买的三种肉苁蓉属药材的40个样品的荧光光谱图像,对图像进行去噪、二值化处理后,根据光谱立方体绘制每个样本的光谱曲线,将所得450~680 nm波段范围内的光谱数据作为鉴别分析的研究对象,应用主成分分析法(PCA)对三种肉苁蓉的光谱数据进行降维处理,再结合Fisher判别方法对三种肉苁蓉进行鉴别。分别比较多元散射校正(MSC)、标准正态变量校正变换(SNV)以及一阶微分(FD)三种数据预处理方法对鉴别模型的影响,并根据主成分的累积贡献率和主成分因子数对判别模型效果的影响对主成分因子数进行优化。分析结果表明:一阶微分预处理后提取前四个主成分进行Fisher判别的鉴别效果最佳,PCA结合Fisher判别建立肉苁蓉属三种药材的判别模型原始判别的准确率达到100%,交叉验证的准确率达到95%。由此可见,利用荧光光谱成像技术结合主成分分析及Fisher判别对肉苁蓉属三种药材的鉴别分析是可行的,而且具有操作简便、快速、可靠等优点。  相似文献   

9.
近红外光谱技术鉴别花椒产地   总被引:1,自引:0,他引:1  
采集四川、重庆、云南、贵州、陕西五省市8个不同产地205个花椒样品的近红外光谱,使用主成分分析(principal component analysis, PCA)、判别偏最小二乘法(discriminant partial least squares, DPLS)分析了花椒产地的分类鉴别。结果表明:在12 500~3 800 cm-1波数范围内,采用不同的光谱预处理方法可以建立较为稳健的DPLS模式识别模型,对不同产地的花椒有较好的分类鉴别。其校正集交叉验证除了经一阶微分预处理的模型识别率为99.39%外,其他预处理方法识别率均为100%,独立验证集总体识别正确率在85.37%~97.56%之间,其中经标准正态变量变换(standard normal variate, SNV)、多元散射校正(multiplicative scatter correction, MSC)预处理后的DPLS判别模型效果最好,误判数仅分别为1个,表示该方法在花椒产地识别中具有可行性。  相似文献   

10.
红木的近红外光谱分析   总被引:1,自引:0,他引:1  
红木珍贵、种类多,大多数人对红木种类及真伪难以或无法鉴别.利用近红外光谱技术对国家标准中八类红木的近红外光谱进行分析,研究结果表明:(1)近红外光谱与红木色度学参数(L*,a*和b*)之间存在非常高的相关性,预测值与实测红木L*,a*和b*值的相关性分别达到0.988,0.991和0.993; (2)利用化学计量学中的主成分分析(PCA)方法可以将八类红木清楚地区分成八个相应的类别,利用三个主成份信息绘制的三维PCA得分图比二维图更能直观地展现八类红木的区别.研究结果说明应用近红外光谱技术识别红木类别具有可行性,这为开发红木的鉴定或识别提供新的方法和研究思路.  相似文献   

11.
贮存时间是影响生菜品质的一项重要因素,传统的贮存时间鉴别方法主要依靠人工经验,但是这种方法的准确率和可信度并不高。研究的目标是建立一种基于模糊识别的模型进行生菜光谱分析以实现生菜贮存时间的鉴别,并与其他鉴别方法作比较。为此,在当地超市购买60份新鲜生菜样品,存放于冰箱中待用。首先,通过AntarisⅡ近红外光谱检测仪采集生菜样品的近红外光谱数据,每隔12小时检测一次,每个样本检测重复三次,并取三次平均值作为实验数据。其次,利用多元散射校正(MSC)减少近红外光谱中的冗余信息。为了进一步去除近红外光谱中的无用信息以及简化随后的数据分类过程,分别运用主成分分析(PCA)和排序主成分分析(PCA Sort)。其中,PCA Sort通过改进对主成分的排序方法能提高分类准确率,同时便于模糊线性鉴别分析(FLDA)进一步提取特征。PCA和PCA Sort的计算仅运用了前15个主成分(能充分反映光谱的主要信息)。最后,利用模糊线性鉴别分析算法(FLDA)和K近邻算法(KNN)进一步分类所得的低维数据。基于PCA和KNN算法的模型鉴别准确率达到43%,而基于PCA, FLDA和KNN算法的模型鉴别准确...  相似文献   

12.
近红外光谱快速鉴别不同产地药用植物重楼的方法研究   总被引:1,自引:0,他引:1  
重楼属植物极具药用价值,野生资源主要分布在我国西南省区。应用近红外漫反射光谱,以贵州、广西和云南三个不同产区的70份野生药用植物重楼为研究对象进行产地鉴别。采用多元信号校正、标准正态变量、一阶导数、二阶导数、Norris平滑和Savitzky-Golay滤波六种方法,对训练集(50份样品)原始光谱进行优化处理。结果表明,多元信号校正结合二阶导数和Norris平滑预处理光谱效果最好。采用光谱标准偏差选择光谱波段(7 450~4 050cm-1),结合主成分-马氏距离(principal component analysis-mahalanobis distance,PCA-MD)建立分类模型,前三个主成分累计贡献率、R2、RMSEC和RMSEP分别为89.44%,97.58%,0.179 6,0.266 4,预测正确率90%;采用变量重要性图选择光谱波段(7 135.33~4 007.35cm-1),结合偏最小二乘判别分析法(partial least square discrimination analysis,PLS-DA)建立判别模型,前三个主成分累计贡献率、R2、RMSEC和RMSEP分别为89.28%,95.88%,0.234 8,0.348 2,预测正确率为100%。比较两种方法的结果可知:采用变量重要性图方法选择光谱波段结合偏最小二乘判别分析法建立的判别模型能更准确地鉴别不同产区的重楼,该方法的建立为中药材真伪和品质评价奠定基础。  相似文献   

13.
应用可见/近红外光谱进行黄酒品种的判别   总被引:3,自引:2,他引:3  
为了实现对黄酒品种的快速判别,采用可见/近红外光谱对不同品种的黄酒获取光谱曲线,然后采用主成分分析方法对光谱数据进行聚类分析,并将其提取的主成分作为BP神经网络的输入值,建立了黄酒品种鉴别模型。该模型将前6个主成分作为神经网络的输入变量,加速了神经网络的学习速度,提高了模型的预测精度。随机选取每个品种的15个黄酒样本,共45个样本组成预测集,剩余的145个黄酒样本组成训练集建立训练模型,并用预测集样本对其进行验证。将品种鉴别的偏差标准定为±0.1,结果表明,只有1个未知样本超出偏差范围,该方法的品种鉴别正确率为97.78%,获得了满意的结果。说明文章提出的方法具有很好的分类和鉴别作用,为黄酒品种的快速鉴别提供了一种新方法。  相似文献   

14.
本文采用不同方法对来自正常和病变关节软骨样本的红外光谱进行预处理,而后利用主成分分析对关节软骨进行鉴别分析。首先对关节软骨切片实现傅里叶变换红外光谱采集,其次分别采用基线校准、标准化、多元散射校正和标准正态变量变换对软骨的红外光谱进行预处理,然后对原始光谱(矩阵)以及预处理光谱进行主成分分析,根据得分矩阵对样本进行分类分析。结果表明:预处理方法结合主成分分析可以更好地对正常和病变关节软骨样本进行分类,而且多种预处理方法的结合可以更好地增强样本间的区分度。另外,针对关节软骨样本,多元散射校正比标准正态变量变换具有更好的增强效果。  相似文献   

15.
报道了在局部加权(LWR)回归方法基础上,自主改进的更简单、实用的局部偏最小二乘回归(LPLS)的原理和方法。并以云南优质烤烟为实验材料,在国产光栅漫反射型近红外仪器上,研究了主成分数以及局部建模样品数对检测结果的影响。结果表明:应用交叉验证方法推荐的尼古丁组分模型主成分数并不是最优,通过适当降低主成分数可提高检测效果;局部建模样品数为30~50个时总糖、总氮、尼古丁预测准确度的提高幅度可分别达7%,14%,10%以上。该方法能有效提高近红外数学模型的预测准确度,是建立具有高度适应性近红外数学模型的有效方法。  相似文献   

16.
现代近红外光谱分析的信息处理技术   总被引:40,自引:11,他引:29  
介绍了现代近红外光谱分析技术的要点,流程,以及建立数学模型的优化层次与建模层次,最后,阐明了在我国应用与发展近红外技术的策略,即“产业化”与“民主化”相结合。  相似文献   

17.
应用可见-近红外光谱技术进行白醋品牌和pH值的快速检测   总被引:2,自引:0,他引:2  
提出了一种基于可见-近红外透射光谱技术快速判别白醋品牌和测定pH值的方法。应用可见-近红外透射光谱获取不同品牌白醋的透射光谱曲线,并对获得的原始光谱数据进行平滑、变量标准化以及一阶导数等预处理,然后利用主成分分析对原始光谱数据进行聚类分析,根据主成分的累计贡献率选取主成分数,并将所选取的主成分作为三层BP神经网络的输入。通过定标集样本对BP神经网络进行训练,得到三层优化神经网络结构:5输入层节点,6隐含层节点和2输出层节点,各层传递函数均采用Sigmoid函数。利用该模型对预测集样本进行预测。实验结果表明在阈值设定为±0.1的情况下该模型对预测集样本品牌鉴别准确率达到了100%,pH预测值与实际测量值偏差小于5%,得到了理想的结果。所以利用可见-近红外光谱技术结合主成分分析和神经网络算法能够快速准确的判定白醋品牌和pH值。  相似文献   

18.
应用可见/近红外光谱进行纺织纤维鉴别的研究   总被引:2,自引:0,他引:2  
为了实现纤维种类的快速鉴别,选用了棉、麻、毛、丝、天丝5种纤维,提出了一种用近红外光谱技术快速无损鉴别纤维品种的新方法。应用可见/近红外光谱漫反射技术测定各种纤维的光谱曲线,用主成分分析方法(PCA)对光谱数据进行模式特征分析,根据主成分的累积贡献率选用前6个主成分数进行建模和预测,通过建立最小二乘支持向量机模型(LS-SVM)对主成分分析模型进行优化,将前6个主成分作为最小二乘支持向量机的输入变量,建立PCA-LS-SVM模式识别模型,实现类别预测的同时也完成了数学建模与优化分析工作。5个品种的纤维训练集样本200个用于PCA-LS-SVM的模型的建立,对其余预测集样本50个进行验证,结果能准确的区分预测集的5种纤维。并提出主成分分析结合最小二乘支持向量机的光谱数据分析方法具有很好的分类和鉴别作用,为纤维品种快速鉴别提供了一种新方法,为维护消费者权益,保证纺织品质量,实现纺织原料及其制品的合理化生产与交易具有重要的意义。  相似文献   

19.
应用近红外光谱技术快速检测果醋糖度   总被引:7,自引:0,他引:7  
为了对果醋糖度值进行快速准确检测,应用近红外光谱技术并结合最小二乘支持向量机分析方法建立了果醋糖度检测模型.应用近红外透射光谱获取五种类型共计300份果醋样本的光谱透射曲线,利用主成分分析方法对原始光谱数据进行降维处理,根据主成分的累计贡献率选取6个主成分.选取的主成分即作为光谱优化特征子集以替代原来复杂的光谱数据.随后将300份果醋样本数据随机分为定标集和预测集,利用最小二乘支持向量机在225个定标集样本数据基础上建立起果醋糖度预测模型,应用此模型对75个预测集样本进行糖度预测.根据预测均方根误差(RMSEP)和预测结果的相关系数(r)对预测模型进行评价,利用此模型得到的样本糖度预测值r=0.993 9,RMSEP=0.363,均达到了较好的预测效果.  相似文献   

20.
可见-近红外光谱用于鉴别山羊绒与细支绵羊毛的研究   总被引:3,自引:1,他引:2  
近红外光谱作为快速、无损的检测技术,近年来在国内外越来越受到广泛关注。针对山羊绒与细支绵羊毛的可见/近红外光谱的特点,提出了应用主成分分析(PCA)结合人工神经网络(ANN)进行山 羊绒与细支绵羊毛的鉴别,并建立了羊毛、羊绒分析模型。应用可见/近红外反射光谱获取山羊绒与细支绵羊毛的光谱曲线,利用主成分分析对原始光谱数据进行处理,根据主成分的累计贡献率99.8%选 取主成分数6,并将所选取的6个主成分作为三层BP神经网络的输入。通过定标集样本对BP神经网络进行训练,用优化的BP神经网络模型对预测集样本进行预测。实验结果表明,16个未知样本的鉴别全部 正确,表明可见/近红外光谱结合主成分分析和神经网络技术对山羊绒与细支绵羊毛进行快速鉴别是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号