首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
测定了水稻叶片的高光谱反射率,以及相应的叶绿素、类胡萝卜素含量,采用一种将350~2 500 nm范围内所有光谱波段两两组合的方法,构建所有可能的归一化比值色素指数,并建立这些指数与叶绿素、类胡萝卜素含量的统计模型,然后将构成最佳模型的指数确定为最适合相应色素估算的指数,并进行验证以及与已知归一化色素指数进行了比较。结果表明,本研究所给出基于叶片水平的色素指数(R1 729-R707)/(R1 729R707),(R1 554-R572)/(R1 554R572),(R1 729-R706)/(R1 729R706),(R1 536-R707)/(R1 536R707)可以较好地估算叶绿素、类胡萝卜素含量。构成这些色素指数的指数波段主要位于700 nm附近,其次为绿光长波区域;构成指数的参照波段主要位于短波红外区域。这说明短波红外区域在色素指数的构建中也有重要作用。这些色素指数对叶绿素、类胡萝卜素含量的估算效果一般要好于各已知的归一化比值色素指数,或者与最好的已知色素指数估算效果相当。  相似文献   

2.
采用AVATAR 360型傅里叶变换红外光谱仪和RM-1000型激光共聚焦拉曼光谱仪测定盐酸曲马多的红外光谱和拉曼光谱。拉曼光谱和红外光谱中均显示出了盐酸曲马多的特征峰,都能够用于其结构鉴别。采用红外、拉曼光谱这两种方法互相印证,互相补充,可增强鉴定的准确性、可靠性。  相似文献   

3.
颜茜 《光散射学报》2013,25(1):85-91
本文采用傅里叶变换红外光谱方法(FTIR)对中药材重楼及其伪品开口箭的红外光谱进行了测试及对比分析。研究表明,重楼和开口箭各自有其独特的红外光谱特征,二者各自所包含的红外吸收峰的峰位明显不同,二者的红外光谱的峰形整体上有非常明显的区别,特别是在1650cm-1处及1405~1258cm-1范围这两个地方二者的峰形有非常明显的区别。采用傅里叶变换红外光谱方法可对重楼及其伪品开口箭加以鉴别和区分。  相似文献   

4.
植物源防腐剂因其环保、广谱、高效等特点越来越受到木材防腐行业的重视,从微观层面探索香樟提取物影响木材腐朽的机理是发展利用植物源防腐剂的重要基础。试验采用香樟木质部的四种溶剂提取物、ACQ及樟脑配制成防腐剂进行防腐试验,结果表明:10%浓度的香樟木质部甲醇提取物以及4%浓度的ACQ处理试件均达到I级强耐腐水平,4%樟脑、10%香樟乙酸乙酯和10%丙酮提取物处理的试件达到Ⅱ级耐腐水平。通过XRD对比发现结晶区2θ衍射强度由大到小的顺序为:10%蒸馏水提取物处理材、马尾松素样、10%丙酮提取物处理材、10%甲醇提取物处理材、10%乙酸乙酯提取物处理材,四种香樟木质部提取物的防腐效果与相对结晶度大小呈正相关。通过FTIR研究发现表征纤维素和半纤维素的特征峰值越低,则被降解的量也越大,相对应的防腐剂防腐效果越差。处理试件中表征木质素的一系列特征峰峰高与未处理材相比有所升高。香樟甲醇提取物以及ACQ处理试件的I1 510/I1 738,I1 510/I1 374,I1 510/I1 160的比值最小,证明褐腐菌对其综纤维素的降解能力最弱,防腐效果最好。  相似文献   

5.
高光谱图像信息的柑橘叶片光合色素含量分析技术研究   总被引:2,自引:0,他引:2  
暗箱环境下采集柑橘叶片高光谱图像,采用阈值法提取整叶有效光谱信息区域的平均光谱,比对分析了柑橘叶片光谱信息不同预处理方法和光谱PLS、BPNN和LS-SVM预测模型对叶绿素a、叶绿素b和类胡萝卜素等光合色素含量的预测精度。结果显示,采用MSC对原始光谱进行预处理和LS-SVM建模对叶绿素a含量的预测效果较好,Rp达0.898 3,RMSEP为0.140 4;采用SNV光谱预处理和LS-SVM模型对叶绿素b含量的预测其Rp为0.912 3,RMSEP为0.042 6;采用MAS预处理和PLS模型对于类胡萝卜素含量预测的Rp和RMSEP分别为0.712 8和0.062 4。结果表明:采用高光谱图像信息可较好地进行柑橘叶片叶绿素a,叶绿素b和类胡萝卜素等光合色素含量的预测,为进一步研究柑橘叶片光合色素含量与组分构成的非损伤实时检测提供了依据。  相似文献   

6.
基于 PROSPECT模型的蔬菜叶片叶绿素含量和SPAD值反演   总被引:1,自引:0,他引:1  
叶绿素含量是衡量植物营养和病虫害发生情况的重要指标。传统的分光光度法对植物叶片破坏性较大且无法实时、快速、无损地获取叶绿素含量。新兴的利用叶绿素仪测量叶绿素相对含量(以下简称SPAD值)的方法不能定量获取实际含量。光学辐射传输模型PROSPECT从生物物理、化学的角度以及能量传输的过程出发,定量描述了叶片色素、水分、结构参数等对叶片反射光谱的影响。因此,提出利用PROSPECT模型同时反演蔬菜叶片叶绿素含量和SPAD值,实时、快速、无损、定量获取植物叶片叶绿素的含量。第一,多次测量三种蔬菜叶片的反射光谱,并用叶绿素仪测量SPAD值。然后,预处理光谱数据,获得平均反射率光谱。第二,以欧式距离为评价函数,利用PROSPECT模型对实测反射率光谱进行拟合。拟合过程中三种蔬菜欧式距离最大为0.008 9,最小为0.006 4,平均为0.007 5,表明该模型能够很好地拟合蔬菜叶片的反射率光谱。第三,根据拟合结果,反演叶绿素含量和透射率光谱,再根据透射率光谱获取叶片在940和650 nm波长处的光透过率,计算叶片的反演SPAD值。第四,建立反演叶绿素含量、反演SPAD值与实测SPAD值的关系模型。结果表明: (1)利用该模型反演得到的叶绿素含量值与实测SPAD值有较好的线性关系, 其关系模型为:y=1.463 3x+16.374 3,两者相关系数为0.927 1,模型的决定系数为0.862,均方根误差为2.11;(2)利用该模型反演得到的SPAD值与实测SPAD值之间线性关系较好,其关系模型为:y=0.986 9x-0.668 3,两者相关系数为0.845 1, 模型的决定系数为0.714 3,均方根误差为3.380 2。研究表明,通过测量植物叶片的反射率光谱,利用PROSPECT模型可以无损、定量地获取蔬菜叶片的叶绿素含量和SPAD值。该方法可推广至其他植物的叶绿素测量和实时监测,为变量施肥、精准种植提供可靠的数据支持。研究结果对蔬菜生长态势的无损监测具有重要的意义。  相似文献   

7.
珊瑚礁遥感监测的任务之一是获取底栖物质的组成及分布,但由于珊瑚礁存在较强的空间异质性及复杂的光谱,使得目前利用遥感技术进行底栖物质信息提取还存在较大难度。珊瑚礁不同底栖物质的光谱特性是开展珊瑚礁遥感监测的基本先验知识,但目前关于不同珊瑚种类的光谱特性分析研究较为匮乏。本研究基于野外实测光谱数据和模拟卫星遥感数据,开展珊瑚礁不同底质类型的光谱特性研究,特别是针对不同造礁石珊瑚种间及种内的光谱差异进行比较分析,并探讨不同珊瑚体内色素组成对珊瑚光谱特性的影响研究,最后甄选了四种常用卫星数据,通过数值模拟探讨了不同底质类型的光谱可分性。结果显示,利用反射光谱曲线值的大小能较好的识别沙和白化珊瑚,而利用蓝绿红波段反射率的一阶微分值能有效识别出海藻、海草和健康珊瑚。对于不同种类的珊瑚而言,科、属、种、珊瑚形状、珊瑚颜色的不同均会对珊瑚的反射光谱造成影响。叶绿素含量(包含叶绿素a、叶绿素b、叶绿素c)与珊瑚反射光谱值相关性较好,是影响珊瑚光谱反射率的主要因素之一,虫黄藻密度在一定程度上也能影响珊瑚光谱反射率,但不如叶绿素影响明显,其密度的高低会影响珊瑚光谱在局部波段的峰值特征。在目前常用的多光谱卫星数据中,Landsat8数据具有可观测近岸的蓝波段,具备识别沙、白化珊瑚、海藻、健康珊瑚、海草的能力,而IKONOS和Quickbird可识别沙、白化珊瑚和海草。相对而言,SPOT5表现较差,仅能识别沙和白化珊瑚。在不同种类珊瑚的识别方面,多光谱遥感数据由于无法捕捉特征波段,需要采用具有高空间分辨率的高光谱遥感数据进行有效识别。在今后的工作中,将进一步扩大珊瑚礁底质样本数据集,并建立珊瑚礁光谱库,为今后我国珊瑚礁遥感监测体系建立提供数据支撑。  相似文献   

8.
FTIR分析脉冲电场和热处理后的大豆分离蛋白结构变化   总被引:8,自引:0,他引:8  
采用自行研制的脉冲电场设备,利用傅里叶变换红外光谱(FTIR)比较研究了脉冲电场(PEF)和热处理对大豆分离蛋白(SPI)分子结构的影响.结果表明:50 kV·cn-1的脉冲场强处理引起SPI分子内和分子间氢键增强,分子中C-O-O糖苷键伸缩振动和P=O,P-O-C伸缩振动增强,且其增加值与PEF处理时间呈正相关.研究发现较短时间(1 600 μs)PEF处理导致了SPI分子结构中α-螺旋和β-折叠分别减少了5.9%和0.7%,β-转角和侧链结构分别增加了7.5%和9.6%;处理时间延长至2 400 μs,其α-螺旋和β-折叠减少量增至6.0%和5.6%.对比而言,热处理对SPI分子结构中C-O-O糖精苷键伸缩振动和P=O,P-O-C伸缩振动的影响程度较大,而对蛋白质二级结构影响程度较小:90℃热处理30 min,α-螺旋和β-折叠分别减小5.1%和6.6%,β-转角结构增加19.1%.由此可以认为PEF和热处理对SPI的影响机理是不一样的.  相似文献   

9.
以甲烷、乙烯、氢气混合扩散火焰碳烟为研究对象,采用激光共聚焦拉曼光谱(Raman)和傅里叶红外光谱(FTIR)研究了不同掺甲烷比例下乙烯、氢气混合火焰碳烟有序度及官能团的分布特性,分析了碳烟石墨化和官能团分布,揭示了掺甲烷对乙烯/氢气(氢气比例30%)层流扩散火焰的碳烟生成影响规律。Raman研究表明在甲烷掺混比为3%和7%时,在火焰高度低于4cm位置生成的碳烟有序程度显著降低,表明在此区域存在明显的碳烟生成协同效应;甲烷掺混比增大超过10%时,协同效应基本消失,碳烟有序度上升。FTIR研究表明掺混甲烷对碳烟官能团组成影响明显。掺混甲烷后脂肪族官能团相对含量整体提高。随着甲烷掺杂比的增大,CH2相对含量增大到一峰值后减小。碳烟中芳香族官能团含量随着火焰高度的上升含量下降明显。掺混3%和7%甲烷,芳香族官能团在2和3 cm火焰高度时,芳香族官能团的含量明显上升。掺混甲烷比高于10%时,芳香族官能团的含量则有所降低。表明少量甲烷掺混使得CH3和C3H3生成有了新的途径,CH3和C3H3增加,而C2H4和C2H2减少不明显,从而促进了多环芳香烃(PAHs)的生成。继续增加甲烷因为稀释作用会抑制C2H2生成从而减少PAHs的生成,芳香族相对含量降低,因而降低了碳烟的生成。研究揭示了甲烷对乙烯/氢气层流扩散火焰中碳烟形成的相互作用:在低甲烷掺混比时存在协同效应促进碳烟生成,而在高甲烷掺混比时协同效应消失。  相似文献   

10.
叶绿素a浓度(Chlorophyll-a: Chl-a)是内陆水体重要的水质参数之一,遥感数据为其提供了大范围、多时相的监测信息,然而由于内陆湖泊水色要素复杂的光学性质及较大的时空差异,传统的遥感影像及单一的Chl-a反演模型在应用中存在着局限性。因此本研究以太湖为研究区,时间分辨率1小时的静止海洋水色卫星Geostationary Ocean Color Imager(GOCI)为数据源,在基于层次聚类法实现归一化实测光谱反射率分类的基础上,利用光谱角测距匹配实现2012年5月6日(08:16—15:16) 8景GOCI太湖影像的水体分类;并针对不同水体类型分别建立基于GOCI影像的Chl-a反演模型,实现不同类型水体的Chl-a浓度反演。结果表明,太湖水体光谱可分为四类,类型1光谱体现出漂浮藻类的特征,可将其作为蓝藻水华的判定依据;类型2—4体现的特征分别为水体含有较高Chl-a浓度、较高悬浮物浓度及相对较低Chl-a较低悬浮物浓度;并且类型2—4与分类前相比,其分类模型估算的Chl-a浓度误差均得到了不同程度的提高,平均相对误差分别降低了7%,12.3%和15.9%;此外,GOCI影像反演结果不仅可以很好地反映Chl-a浓度的空间分布状况,也能反映出太湖Chl-a浓度的日变化差异及规律,表现出了其在富营养化污染动态监测及预警中的应用潜力。该方法在GOCI影像中的应用,在提高Chl-a浓度反演精度的同时也提高了模型在实际应用中的适用性,为日后太湖水体不同时刻Chl-a浓度的精确估算提供了基础。  相似文献   

11.
比较鸡冠花炒炭前后XRD及IR光谱特征,探讨XRD及IR光谱对鸡冠花炒炭前后鉴别的意义。运用XRD光谱及IR二阶导数光谱,对不同产地鸡冠花炒炭前后进行光谱分析。鸡冠花及鸡冠花炭的XRD图比IR二阶导数谱差异更明显。XRD光谱技术可以对鸡冠花及鸡冠花炭进行直接、快速、有效的鉴别,可为鸡冠花及鸡冠花炭鉴别和质量控制提供可靠依据。  相似文献   

12.
叶片中类胡萝卜素是植被环境胁迫、光合能力和植被发育阶段的指示器。基于叶片的原位拉曼光谱响应特性对龙井43叶片的类胡萝卜素含量进行了研究,建立了两者之间的定量模型。本文共对315个龙井43叶片样本进行了拉曼光谱采集和分光光度检测。为排除检测过程中受噪声、基线漂移等因素的干扰,运用和比较了五种光谱数据预处理方法提取原始拉曼光谱中与茶叶中类胡萝卜素含量有关的有效信息。基于预处理后的数据建立了偏最小二乘(PLS)回归模型,拉曼光谱与类胡萝卜素含量的建模集和预测集的相关系数(r)分别为0.817和0.786。为进一步研究类胡萝卜素的拉曼光谱响应机理,本文采用连续投影算法(SPA)优选了17个拉曼特征波数建立相应的特征波数模型,模型的建模集和预测集的相关系数(r)分别为0.808和0.777。根据已建立的模型,探究了茶树四个不同叶位的叶片类胡萝卜素含量的变化。发现茶树叶片随着叶龄的增加,类胡萝卜素浓度呈先增后减的趋势。以第2位叶的类胡萝卜素含量最高。进一步验证了模型的可行性以及探索了将该模型应用于茶树叶片树龄和叶位探测的可能性。采用拉曼光谱技术可以实现茶树叶片中类胡萝卜素含量的原位、无损、定量检测。  相似文献   

13.
习岗  李英  曹永军  宋清 《光子学报》2005,34(7):1023-1027
在300MHz低强度微波电磁场作用下,菠菜和烟草叶片光合细胞叶绿素荧光动力学过程和光合色素呈现不同的变化.菠菜的荧光动力学参量F0和FVI/FV减小,FV/F0、ΔFV/T和FV/Fm升高;烟草的荧光动力学参量F0升高,FVI/FV没有明显变化,FV/F0、ΔFV/T和FV/Fm降低.在微波作用下,菠菜和烟草叶片的光合色素系统的变化也有差异,菠菜和烟草的叶绿素含量均降低,但菠菜的类胡萝卜素含量明显升高.这些结果表明,低强度微波电磁场使烟草叶片光合机构受到抑制,光合色素系统受到破坏,因而光合作用下降;菠菜则通过光合细胞的光合机构中PSⅡ活性中心异质性的转变和光合色素中类胡萝卜素含量的升高来适应微波辐射的环境,使光合作用维持在较高水平.  相似文献   

14.
The aim of this study is to examine seasonal changes in Cu and Co concentrations of three plant species for monitoring the effects of pollution in Elazig,Turkey.For this purpose,the leaves of the Pinus nigra L.,Cedrus libani and Cupressus arizonica together with soil samples were collected from different points depending on traffic intensity,nearness the city center and cement factory as well as control location during different months of the year.Flame atomic absorption spectrophotometer(FAAS) was used for measurement of the metals in clear digests after the dry ashing method.Copper and Co concentrations were in the ranges from 1.3to 2.6mg.kg-1 and相似文献   

15.
浑善达克沙地光合/非光合植被及裸土光谱混合机理分析   总被引:1,自引:0,他引:1  
研究浑善达克沙地光合/非光合植被(photosynthetic/non-photosynthetic vegetation,PV/NPV)及裸土(bared soil,BS)光谱混合机理,对于构建沙地最佳光谱混合模型、准确估算沙地地表植被覆盖信息具有重要意义。本研究通过两景覆盖研究区的Hyperion高光谱影像获取47个典型混合样地对应混合光谱信息,利用地面实测获取PV/NPV及BS端元光谱和每个样地各端元丰度信息,然后分别尝试采用线性光谱混合模型和非线性光谱混合模型对所有样地混合光谱进行分解计算光合植被覆盖度(fractional cover of photosynthetic vegetation,fpv)和非光合植被覆盖度(fractional cover of non-photosynthetic vegetation,fnpv),通过比较不同模型分解均方根误差及PV/NPV覆盖度估算精度来探索浑善达克沙地PV/NPV及BS之间光谱混合形成机理,寻求适合其fpvfnpv估算的最佳光谱混合模型。结果表明:对于浑善达克沙地来说,基于PV/NPV及BS的线性光谱混合模型可以实现fpvfnpv的较好估算,fpv估算的均方根误差为0.12(R2=0.84),fnpv估算的均方根误差为0.13(R2=0.66);考虑多重散射影响的非线性光谱混合模型无论在模型分解精度还是在fpvfnpv估算精度上均没有明显提升,其中各端元之间的多重散射作用对fpv估算精度的影响不大,但会导致fnpv估算精度的明显降低。  相似文献   

16.
小麦条锈病和白粉病作为我国麦区两种重要病害,在田间常同时发生,为病害防治管理带来困难。基于实验测试获得白粉病、 条锈病叶片光谱数据,探讨采用光谱分析对两种病害进行区分识别及严重度监测的可行性。通过相关分析和独立T检验,筛选出对白粉病和条锈病敏感度差异较显著的波段及光谱特征,包括665~684,718~726 nm等6个波段范围,以及DEP550-770,SIWSI等11个光谱特征。基于这些波段和特征,采用FLDA构建病害判别模型;借助PLSR分析构建病情严重度反演模型。研究结果表明,筛选得到的反射率波段和光谱特征能够较好地区分两种病害,判别模型总体精度达到80%以上,准确度较高。其中,染病比率超过20%的病叶区分和识别精度可达95%。同时,分别基于两种病害敏感光谱特征构建的病情严重度反演模型能够较好地估测病情严重度,两种病害估测均方根误差均低于15%。上述叶片尺度小麦白粉病和条锈病区分和严重度反演模型为进一步研究两种病害冠层尺度的区分和监测提供基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号