首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
人参总糖的近红外光谱定量分析   总被引:3,自引:3,他引:3  
采用近红外光谱分析技术对中国人参的总糖指标进行了光谱及定量分析,并且结合偏最小二乘回归法对人参总糖进行了定标建模分析,分析结果表明该技术所给出的分析精度可以和传统化学分析方法相媲美,定标标准差(RMSEC)为1.9%,相关系数为0.951 7,而且具有分析速度快、无化学污染、样品制备简单、分析成本较低、适用于在线成分质量监控等特点。  相似文献   

2.
果酒发酵中的多酚是引起果酒口感、颜色变化的重要因素。为保证果酒品质,有必要开发一种快速监测发酵过程中多酚含量变化的技术。收集不同批次成熟期的蓝莓、桑葚为原料,分别碾压成汁,同时按比例混合二者,于小型发酵罐进行发酵。通过离线收集不同发酵时段的发酵液于离心管,高速离心后取上清液置于棕色瓶保存,共计得到48个果酒发酵样本。将上清液置于三个平行样比色皿,以傅里叶快速变换近红外光谱仪(FT-NIR)采集其透射光谱,取平均值作为该样本的光谱信号。然后将棕色瓶内的发酵液以国标法(即以标准液的吸光度值制定标准曲线)测定各样品的总酚含量,以duplex法计算样本光谱之间的距离且按2∶1的比例划分为训练集和预测集。采用间隔偏最小二乘法(iPLS)将训练集样本的透射光谱与总酚含量之间构建定量模型,间隔数从2依次变化到60个。该研究创新之处是使用共识方法融合多个已构建好的iPLS成员模型,按一定的共识规则分配权系数。通过各成员模型交互验证的残差及其残差之间的相关性来优化各成员模型的线性组合,以拉格朗日乘数法求解各成员模型的权系数,使间隔偏最小二乘-共识模型(consensual iPLS,CiPLS)的交互验证均方根误差最小。相比于全局PLS模型、划分不同间隔数量时的iPLS模型,CiPLS均具有较小的预测误差。当划分39个间隔时由三个iPLS成员模型(即14th,16th,18th)组成的共识模型误差最小为124.2,交互验证相关系数为0.944,对预测集样本的预测均方根误差为163.4,预测相关系数为0.931,预测性能均优于PLS和iPLS模型。另外,作为对比选用连续投影算法与无信息变量剔除法来优化光谱模型,其预测性能均不及本文提出的共识模型。分析各iPLS模型预测残差之间的相关性,发现共识模型主要是融合那些具有较高预测性能且模型间较低相关性的成员模型。结果表明,光谱分析结合共识方法可提高回归模型的预测精度、减少建模所需变量数,能够用于果酒总酚含量的离线快速检测。  相似文献   

3.
极限学习机理论(extreme learning machine, ELM)作为一种新的化学计量学方法,在近红外光谱定量分析中的应用研究,已引起学术界的高度重视。然而,由于光谱数据维数较高,建立ELM模型时需要大量的隐节点,导致隐含层输出矩阵维数高且存在高度共线性,用现有的Moore-Penrose广义逆算法求取隐含层输出矩阵与待测性质间的回归模型往往会存在病态问题。基于ELM建立光谱波长变量与性质之间的回归模型,提出以ELM模型隐含层输出矩阵作为新的变量,采用作者最新提出的基于变量投影重要性的改进叠加PLS算法(stacked partial least squares regression algorithm based on variable importance in the projection,VIP-SPLS),建立新变量与待测性质间的回归模型。VIP-SPLS算法充分利用了每个隐节点的输出信息,能有效解决高维共线性问题,同时具有模型集成的优点,从而改进了ELM模型的性能。将提出的改进ELM算法(improved ELM,iELM)应用于标准近红外光谱数据集,结果表明iELM模型的精度相对于现有的PLS模型和ELM模型分别显著提升了29.06%和27.47%。  相似文献   

4.
药品质量关乎人民健康和国家命脉,随着社会经济的飞速发展对药品质量的快速、有效鉴别具有极其重要的作用。光谱分析技术具有较高的准确性、较快的分析速度且对样品不存在污染等突出优点,广泛应用在化工、石油以及医药等重要的领域。为了解决传统药品鉴别模型存在的鉴别精度低、鉴别速度不能满足实际需求且鉴别模型稳定性差的问题,采用光谱仪采集药品的近红外光谱数据达到对药品无污染鉴别的目的。结合随机森林和CatBoost对药品进行分类鉴别,以实现快速且准确的鉴别。首先采用随机森林(RF)对光谱仪采集的光谱数据进行有效特征波长的筛选,从而将药品光谱数据中的无关波长去除、筛选出最能表征样品属性的特征波长,然后以极限学习机(ELM)作为CatBoost的弱分类器分析筛选的特征波长对药品的属性鉴别。由于ELM仅只含有一个隐含层且无需多次迭代寻优保证了鉴别模型运行速度更快,CatBoost通过集成弱分类器以改善模型鉴别准确性。为对所提出的药品鉴别模型性能进行有效评估,采用随机抽取训练集的方式构造不同规模药品光谱数据并分别上进行独立实验且以10次运行结果的均值作为其最终结果,并通过与CatBoost、持向量机(SVM)、...  相似文献   

5.
选用6个品种(埃利奥特、达柔、爱国者、杜克、北蓝、蓝丰)的蓝莓,应用傅里叶变换近红外光谱仪(FTNIR)对蓝莓中总酚含量进行分析,采用主成分分析(PCA)和偏最小二乘回归法(PLS)建立了蓝莓总酚含量近红外数学校正集模型,其相关系数为0.9512、校正集标准偏差(RMSEC)为0.72、预测集标准偏差(RMSEP)为0...  相似文献   

6.
Elastic net是对最小二乘方法的一种改进,在最小二乘法的基础上增加了L1和L2惩罚,具有变量选择和模型可提高预测精度的良好性质。此研究以89个小麦样品为实验材料,通过Elastic net方法优选光谱主成分,建立近红外光谱与小麦中蛋白质含量之间的定量分析模型,考证了Elastic net优选主成分建立定量分析模型的可行性。实验中将89个小麦样品随机分成两组,60个样品做建模集,其余29个做预测集。60个样品所建模型预测29个样品的蛋白质含量,预测值和化学测量值间的相关系数(r)为0.9849,平均相对误差为2.48%。为进一步考察该方法建模的可行性和稳定性,对89个样品分别进行5次随机划分,60个样品做为建模集,29个样品做为预测集,5次建模所选光谱的主成分基本一致;同时与PCR和PLS方法作对比,结果显示5次所建模型的预测效果明显好于PCR,且与PLS方法相近。鉴于Elastic net具有变量选择的功能,且所建模型具有较好的预测效果,表明该方法是一种可行的建立化学计量学定量分析模型的方法。  相似文献   

7.
近红外光谱仪器中滤光片波长组合的优选   总被引:2,自引:1,他引:1  
柳星  刘莹 《光谱实验室》2011,28(6):2874-2877
如何快速、准确地进行滤光片波长组合的优选,是滤光片型近红外光谱仪器研究的一个关键技术.利用组合生成算法与多元线性回归分析相结合,并运用计算机编程语言分析了掺假山茶油的近红外光谱吸光度矩阵,优选出不同组合数下滤光片波长组合.该方法可在全光谱波长范围内快速的实现滤光片的优选,且建立的定量分析模型简单、精度高、稳定.  相似文献   

8.
由工业发展需求,针对菱镁矿石矿物含量不同以及分布不均匀而难以判定其品级的情况,提出一种由近红外光谱技术结合ELM的菱镁矿石品级分类模型。该模型可以实现菱镁矿石品级的快速分类。近红外光谱利用菱镁矿中不同种类含H基团对近红外光谱有不同吸收的特性,用来测定菱镁矿石的成分及其含量,其操作简便、不破坏样品、速度快、准确高效。以辽宁省营口市大石桥的菱镁矿石30组为研究对象,采集菱镁矿石的近红外光谱数据样本30×973。采用主成分分析(PCA)对其进行降维处理,以主元贡献率大于99.99%而得到10维的特征变量值。建立了ELM算法定量分析数学模型,取20组样本为训练样本(包括6组特级,14组非特),其余10组作为测试样本(其中4组特级,6组非特),ELM算法模型的隐含层节点数选取20。为了进一步提高分类效果,提出两种ELM算法模型的改进:采用循环模式对传统ELM的输入权值和阈值进行寻优的精选ELM和在精选ELM基础上进行集成的集成-精选ELM。并与用人工方法、化学方法和BP神经网络模型方法对菱镁矿石样品品级分类作对比。结果表明:近红外光谱和ELM菱镁矿石品级分类模型不论在时间上还是成本上,都具有明显的优势,且其准确率能够达到90%以上,为菱镁矿石品级分类提供了一条新的途径。  相似文献   

9.
近红外光谱药品鉴别作为识别假冒伪劣药品的一种有效技术手段,已被广泛应用到各大医疗行业和药品监督管理机构,并结合模式识别建模方法在基层药品打假中得到较好的推广。由于传统建模方法很难满足药品鉴别中大规模、多分类、快速建模等问题,因此采用一种基于波形叠加极限学习机(SWELM(CS))分类方法对光谱数据进行鉴别。通过选用极限学习机(ELM)作为光谱药品分类器,使得分类模型具有快速学习能力以及对训练样本不敏感的特点;由于极限学习机的连接权值和隐层神经元阈值是随机生成导致网络稳定性差,因此结合布谷鸟搜索算法优化分类模型参数;采用反双曲线正弦函数与Morlet小波函数叠加的激励函数代替ELM原有的单一激励函数改善了分类模型的收敛速度和稳健性。通过上述改进方法使得SWELM(CS)具有对训练样本不敏感性,布谷鸟参数优化的分类稳定性、波形叠加函数的强收敛性与信号特征提取能力。该方法为核函数提供的信号特征提取及拟合的思想,可推广到其他学习算法中以获取更高的分类准确度及稳定性。该实验选定西安杨森制药厂生产的249个近红外光谱药品样本作为研究的主要对象,重点研究光谱药品的二分类和多分类实验,实验证明SWELM(CS)分类器相比BP神经网络、标准ELM以及粒子群优化ELM等传统分类器算法具有更高的分类准确度、分类稳定性及更小的训练样本敏感性。  相似文献   

10.
压缩感知(CS)是一种新兴的信号压缩和采样技术,正交匹配追踪(OMP)是一种贪婪追踪算法,广泛用于压缩感知领域中的稀疏信号重构.针对近红外光谱信号高维小样本以及信号稀疏先验的特点,为进一步提高小样本近红外光谱变量选择的灵活性和可靠性,基于压缩感知理论,提出了一种新颖的光谱变量选择方法正交匹配追踪变量选择(OM PBVS...  相似文献   

11.
应用近红外光谱对低碳数脂肪酸含量预测   总被引:2,自引:0,他引:2  
应用近红外光谱技术结合支持向量机回归(support vector machine regression, SVR)方法测量食用植物油脂低碳数脂肪酸(C≤14)含量。使用SupNIR-5700近红外光谱仪采集58个样品的近红外光谱图,通过偏最小二乘(partial least square, PLS)算法剔除奇异样品。选择其中具有代表性的52个样品进行主成分分析(principal component analysis, PCA),选取径向基(radial basis function, RBF)核函数建立支持向量机回归模型,并对光谱预处理方法和参数寻优方法进行了详细的分析和讨论。实验表明,经过粒子群算法(particle swarm optimization, PSO)优化后模型的性能都有所提高,泛化能力更强,预测的准确度和稳健性更好;其中预处理方法2经过PSO优化寻优后的参数C=2.085, γ=22.20时,预测集和校正集相关系数(correlation coefficient, r)分别达到了0.998 0和0.925 8,均方根误差(root mean square error, MSE)分别为0.000 4和0.014 3。研究结果表明,应用近红外光谱结合PSO-SVR方法进行食用植物油脂低碳数脂肪酸含量快速、准确的预测是可行的。  相似文献   

12.
有监督主成分回归法在近红外光谱定量分析中的应用研究   总被引:5,自引:0,他引:5  
介绍了运用有监督主成分回归法建立近红外光谱定量分析模型的原理和方法.利用该方法先进行近红外光谱定量分析建模的波长信息选择,达到降低光谱数据维数的目的,然后建立数学模型,并用其分析预测集样品.文中以66个小麦样品为实验材料,随机选择其中40个样品建立小麦样品中蛋白质含量的近红外光谱定量分析模型,首先优选出4个波长点:4 632,4 636,5 994,5 997 cm-1,利用这4个波长点处光谱信息建立主成分回归模型预测26个样品的蛋白质含量,其结果与凯氏定氮法分析结果的相关系数为0.991,平均相对误差为1.5%.该方法从大量光谱数据中筛选出最重要的部分波长信息,实现了"少而精"的波长点选择,对建立抗共线性信息干扰的光谱定量分析模型,同时对指导专用近红外分析仪器设计中波长点的选择等方面都有一定的意义.  相似文献   

13.
基于近红外光谱的淡水鱼新鲜度在线检测方法研究   总被引:1,自引:0,他引:1  
新鲜度是反映鱼类品质以及可否食用的重要指标,在线检测直接关系到食品质量与安全的实施应用,因此对淡水鱼新鲜度进行在线无损检测具有重要意义。应用近红外光谱对淡水鱼新鲜度进行在线检测,试验装置采用自行搭建的淡水鱼近红外光谱在线采集装置,试验时样品在输送链上以0.5 m·s-1的速度运动,采集其近红外漫反射光谱(900~2 500 nm),并用支持向量机(support vector machine, SVM)建立淡水鱼新鲜度在线检测模型。采用光谱理化值共生距离(sample set partitioning based on joint X-Y distance algorithm, SPXY)算法对样本集进行划分,其中校正集111条(新鲜57条,变质54条)、测试集37条(新鲜19条,变质18条),通过对比不同的光谱预处理方法对预测结果的影响,明确了一阶导结合标准化预处理为最优光谱预处理方法,经过该方法预处理后所建模型对校正集的正确识别率为97.96%,对测试集的识别率为95.92%。为了提高模型运行速度对建模所用光谱变量进行优化,分别采用遗传算法(genetic algorithm, GA)、连续投影算法(successive projection algorithm, SPA)和竞争性自适应重加权算法(competitive adaptive reweighed sampling algorithm, CARS) 三种不同的特征变量选择方法对特征波长进行筛选,通过建模比较分析确定CARS为最优波长选择方法,以所选的10个特征波长建立淡水鱼新鲜度支持向量机检测模型,模型对校正集的正确识别率为100%,对测试集的识别率为93.88%。该研究可为近红外光谱用于淡水鱼新鲜度在线检测提供技术支持。  相似文献   

14.
全连接网络作为深度学习中的一种典型结构,几乎在所有神经网络模型中均有出现。在近红外光谱定量分析中,光谱数据样本数量较少,但每个样本的维度高。导致了两个问题:将光谱直接输入网络,网络的参数量会十分庞大,训练模型需要更多的样本,否则模型容易进入过拟合状态;在输入网络前对光谱进行降维,虽解决了网络参数量过大的问题,但会丢失一部分信息,无法充分发挥网络的学习能力。针对近红外光谱的特性,提出了一种分组全连接的近红外光谱定量分析网络GFCN。该网络在传统的两层全连接网络的基础上,用若干个小的全连接层替代第一个全连接层,克服了直接输入光谱导致网络参数量过大的缺点。采用Tecator和IDRC2018数据集对该方法进行测试,同时与全连接网络FCN和偏最小二乘PLS两种方法进行对比。结果显示:在两个数据集上,GFCN预测效果均优于FCN和PLS。在只有少量样本参与建模的情况下,GFCN依然能够保持较高的预测效果。表明,GFCN可以用于近红外光谱的定量分析,并且适应样本较少的场景,具有重要的研究价值和广泛的应用场景。  相似文献   

15.
利用近红外光谱结合偏最小二乘法实现对不同品牌盐酸左西替利嗪片剂有效成分的定量分析。经内部交叉验证,确定最佳波数范围和光谱预处理方法,以及最佳主成分数,建立最优PLS校正模型。对验证集样品浓度进行预测,得到均方根误差RMSECV、决定系数R2分别为0.276和0.974。该方法能够用于不同厂家盐酸左西替利嗪片的快速定量分析,是一种有效的药品快速检验技术。  相似文献   

16.
近红外光谱技术在微生物检测中的应用进展   总被引:1,自引:0,他引:1  
近红外光谱作为一种无损检测技术被广泛应用于农业、制药、食品等领域的多组分品质快速监测。微生物的快速准确检测,在临床诊断、制药和食品加工等领域一直是一个难题。微生物菌体细胞壁、细胞膜及细胞内生物大分子和水的近红外光谱具有高度特异性,因此可以使用近红外光谱快速识别和分类不同的微生物。通过对相关文献的归纳整理与分析提炼,对近红外光谱技术在微生物检测中的研究进展做综述。对微生物的基本知识和近红外光谱技术鉴定微生物的基本原理进行了介绍,并重点综述了近红外光谱技术在微生物分类、食源性微生物检测和成像微生物检测等方面的国内外研究进展,最后对近红外光谱技术目前存在的问题和未来的应用前景进行了展望,以期为今后在微生物检测领域更好地利用近红外光谱提供参考。  相似文献   

17.
双孢蘑菇质地柔嫩、营养丰富,具有很好的降血压、降血脂、消炎护肝等多种保健价值,其新鲜度是反映内外部品质的重要指标之一。目前双孢蘑菇新鲜度鉴别大多依据其外观品质变化(褐变),缺乏精准的量化评价指标与方法,因此提出了以贮藏天数为新鲜度检测的量化指标,并利用近红外光谱技术对双孢蘑菇新鲜度进行检测分析。依据存储天数不同,将双孢蘑菇样本分为1~5组,每组40个样本,依次采集每组双孢蘑菇的近红外光谱数据。针对采集的原始光谱数据,首先选用卷积平滑滤波(SG)与多元散射校正(MSC)消除原始光谱噪声、基线平移以及光散射的影响,并选取399.81~999.81 nm的光谱波段作为数据处理范围;然后分别使用主成分分析(PCA)和连续投影算法(SPA)进行光谱降维和特征波长选择,继而建立极限学习机(ELM)分类模型;同时考虑到ELM模型中初始值对分类准确率影响较大,分别选用粒子群优化算法(PSO)、海鸥优化算法(SOA)对ELM中初始权值及阈值进行寻优,形成PSO-ELM,SOA-ELM优化组合分类模型;最后分别将全光谱、提取主成分以及所选的特征波长{556.87,445.51,481.15,885.10,802.25,720.90,861.34,909.79,924.44,873.17 nm}输入到分类模型中,建立不同输入、不同分类模型的双孢菇新鲜度检测模型。最终试验结果表明,当ELM为分类模型,以全光谱、主成分以及特征波长为输入时的预测精度分别为75%,95%,88%;以SPA优选特征波长作为输入的PSO-ELM、SOA-ELM分类模型训练集精度为96.25%,93.25%,预测集精度为92.5%,94%。可知,SPA波长选择算法可以有效降低光谱信息中存在的冗余信息,加快建模效率,同时海鸥优化算法能较好的优化ELM分类模型的初始参数,分类精度较ELM模型提高了6.8%,同时不产生过拟合现象。因此,利用光谱特征可以快速、准确无损的识别双孢蘑菇的新鲜度,研究结果为便携式双孢蘑菇新鲜度快速无损检测设备的开发提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号