首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The HeH+ molecular ion under an ultrashort magnetic field on the order of 109 G is investigated through quantum fluid dynamics and a current‐density functional theory (CDFT) based approach, employing a vector exchange–correlation (XC) potential which depends on the electronic charge‐density as well as on the current‐density. The behavior of the exchange and correlation energies of the HeH+ ion is analyzed and compared with those obtained using an approach based on the time‐dependent density functional theory (TD‐DFT) under similar computational constraints but employing a scalar XC potential dependent only on the electronic charge‐density. The CDFT‐based approach yields exchange and correlation energies as well as TD electronic charge‐densities drastically different from those obtained using the TD‐DFT‐based approach particularly, at typical TD magnetic field strengths. This is attributed to the nonadiabatic effects induced by the vector XC potential of the CDFT in the oscillating charge‐density of the HeH+ ion, which are further explained in the terminology of quantum fluid dynamics. The vector XC potential of the CDFT‐based approach is observed to augment the magnetic interactions in the H2 molecule and in the He ion, whereas it opposes the magnetic interactions in the HeH+ ion particularly, at the intermediate magnetic field strengths. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The early stages of the Coulomb explosion of a doubly ionized water molecule immersed in liquid water are investigated with time‐dependent density functional theory molecular dynamics (TD–DFT MD) simulations. Our aim is to verify that the double ionization of one target water molecule leads to the formation of atomic oxygen as a direct consequence of the Coulomb explosion of the molecule. To that end, we used TD–DFT MD simulations in which effective molecular orbitals are propagated in time. These molecular orbitals are constructed as a unitary transformation of maximally localized Wannier orbitals, and the ionization process was obtained by removing two electrons from the molecular orbitals with symmetry 1B1, 3A1, 1B2 and 2A1 in turn. We show that the doubly charged H2O2+ molecule explodes into its three atomic fragments in less than 4 fs, which leads to the formation of one isolated oxygen atom whatever the ionized molecular orbital. This process is followed by the ultrafast transfer of an electron to the ionized molecule in the first femtosecond. A faster dissociation pattern can be observed when the electrons are removed from the molecular orbitals of the innermost shell. A Bader analysis of the charges carried by the molecules during the dissociation trajectories is also reported.  相似文献   

3.
《Solid State Sciences》2012,14(2):241-249
In this paper, we present the Compton profiles of Bi2S3 and Bi2Se3 using our 20 Ci 137Cs Compton spectrometer. To compare our experimental data, we have computed the Compton profiles, energy bands and density of states using linear combination of atomic orbitals with density functional theory (DFT) and Hartree-Fock (HF) scheme. It is seen that hybrid functional involving HF and DFT approximations gives a relatively better agreement with experimental momentum densities than other approximations of DFT. We have also reported the band structure, density of states, valence charge densities, dielectric functions and electron energy loss spectra using full potential linearized augmented plane wave scheme. On the basis of charge densities, Mulliken’s population data and equal-valence-electron-density profiles, Bi2S3 is found to be more ionic than Bi2Se3. The calculated dielectric functions for the parallel and perpendicular polarizations show a small anisotropic effect. The electron energy loss spectrum for Bi2Se3 is found to be in good agreement with the available experimental data.  相似文献   

4.
An improved synthetic route to homoleptic complex [Pt(CAACMe)2] (CAAC=cyclic (alkyl)(amino)carbenes) and convenient routes to new heteroleptic complexes of the form [Pt(CAACMe)(PR3)] are presented. Although the homoleptic complex was found to be inert to many reagents, oxidative addition and metal‐only Lewis pair (MOLP) formation was observed from one of the heteroleptic complexes. The spectroscopic, structural, and electrochemical properties of the zero‐valent complexes were explored in concert with density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) calculations. The homoleptic [Pt(CAAC)2] and heteroleptic [Pt(CAAC)(PR3)] complexes were found to be similar in their spectroscopic and structural properties, but their electrochemical behavior and reactivity differ greatly. The unusually strong color of the CAAC‐containing Pt0 complexes was investigated by TD‐DFT calculations and attributed to excitations into the LUMOs of the complexes, which are predominantly composed of bonding π interactions between Pt and the CAAC carbon atoms.  相似文献   

5.
The absorption and emission energies for diphenylboron analogs of Alq3 (Ph2Bq) and its methyl substituents (Ph2Bmq) were systematically investigated at the Zerner's intermediate neglect of differential overlap (ZINDO), configuration interaction singles (CIS), and time‐dependent density functional theory (TD‐DFT) levels of theory. The lowest excited‐state geometries were optimized at the ab initio CIS level. The TD‐DFT method provides the most reliable results for the absorption and emission transition energies, compared with other methods. Moreover, the TD‐DFT calculations reliably estimate the changes of absorption and emission λmax values upon methyl substitution, with errors of 1.2% and 1.8%, respectively. The Stokes shifts are well reproduced by TD‐DFT calculations. Various density functional theory methods have been tested and the B3LYP functional clearly seems to be the best choice for this class of compounds. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

6.
Gauge‐independent atomic orbital (GIAO) method at Hartree‐Fock (HF) and density functional theory (DFT) levels, respectively, was employed to calculate 19F NMR chemical shieldings of solid state alkaline‐earth‐metal fluorides MF2 (M = Mg, Ca, Sr, Ba). The results show that, although the calculated 19F chemical shieldings tend to be larger than the experimental values, they have a fairly good linear relationship with the observed ones. The calculated results based on different combinations of basis sets show that the B3LYP (a hybrid of DFT with HF) predictions are greatly superior to the HF predictions. When a basis set of metal atom with effective core potential (ECP) has well representation of valence wavefunction, especially wavefunction of d component, and proper definition of core electron number, it can be applied to obtain 19F chemical shielding which is close to that of all‐electron calculation. The variation of 19F chemical shielding of alkaline‐earth‐metal fluorides correlates well with the lattice factor A/R2.  相似文献   

7.
The structural and electronic properties of a photochromic molecule dictate their potential photochemical activity. To gain insight into these influences, the ground‐state structure and excited state properties of six indolylgulgides were calculated using several time dependent‐density functional theory (DFT) (TD‐DFT)//DFT methods, second‐order M?ller–Plesset (MP2), and CIS(D). These methods simulated the charge‐transfer properties and the conformation of the ground‐state structure for each molecule. Generally, TD‐DFT accurately simulated the expected charge‐transfer state. The degree of spatial overlap of the occupied and virtual molecular orbitals involved in the S1 transition of indolylfulgides quantitatively assessed their charge‐transfer character and was qualitatively useful in assessing their photochromic activity. The M06, M06‐2X, and M11 structures were quite similar to those calculated by MP2. Structural differences, similarities, and functional trends are compared and discussed. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
H2O和OH在UO(100)表面吸附的密度泛函研究   总被引:1,自引:0,他引:1  
运用密度泛函理论中的广义梯度近似(GCA)的PW91方法结合周期性平板模型,研究了H2O分子和OH在UO(100)表面上的吸附.通过对不同吸附位的吸附能和几何结构参数的计算和比较发现:水分子在UO(100)表面的吸附为化学吸附,水分子平面与UO(100)表面夹角为15°的吸附构型最稳定,吸附能最大,近89 kJ·mol-1.对H2O吸附前后的态密度分析可知,H2O通过其O原子的P轨道与底物U原子的d轨道作用.本文还进一步探讨H2O在UO(100)表面的解离机理.  相似文献   

9.
Bis(2‐methyl‐8‐quinolinolato)aluminum(III) hydroxide complex (AlMq2OH) is used in organic light‐emitting diodes (OLEDs) as an electron transport material and emitting layer. By means of ab initio Hartree–Fock (HF) and density functional theory (DFT) B3LYP methods, the structure of AlMq2OH was optimized. The frontier molecular orbital characteristics and energy levels of AlMq2OH have been analyzed systematically to study the electronic transition mechanism in AlMq2OH. For comparison and calibration, bis(8‐quinolinolato)aluminum(III) hydroxide complex (Alq2OH) has also been examined with these methods using the same basis sets. The lowest singlet excited state (S1) of AlMq2OH has been studied by the singles configuration interaction (CIS) method and time‐dependent DFT (TD‐DFT) using a hybrid functional, B3‐LYP, and the 6‐31G* basis set. The lowest singlet electronic transition (S0 → S1) of AlMq2OH is π → π* electronic transitions and primarily localized on the different quinolate ligands. The emission of AlMq2OH is due to the electron transitions from a phenoxide donor to a pyridyl acceptor from another quinolate ligand including C → C and O → N transference. Two possible electron transfer pathways are presented, one by carbon, oxygen, and nitrogen atoms and the other via metal cation Al3+. The comparison between the CIS‐optimized excited‐state structure with the HF ground‐state structure indicates that the geometric shift is mainly confined to the one quinolate and these changes can be easily understood in terms of the nodal patterns of the highest occupied and lowest unoccupied molecular orbitals. On the basis of the CIS‐optimized structure of the excited state, TD‐B3‐LYP calculations predict an emission wavelength of 499.78 nm. An absorption wavelength at 380.79 nm on the optimized structure of B3LYP/6‐31G* was predicted. They are comparable to AlMq2OH 485 and 390 nm observed experimentally for photoluminescence and UV‐vis absorption spectra of AlMq2OH solid thin film on quartz, respectively. Lending theoretical corroboration to recent experimental observations and supposition, the reasons for the blue‐shift of AlMq2OH were revealed. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2004  相似文献   

10.
Evolution of hydrogen molecule, starting initially from its field‐free ground state, in a time‐dependent (TD) magnetic field of order 1011 G is presented in a parallel internuclear axis and magnetic field‐axis configuration. Effective potential energy curves (EPECs), in terms of exchange and correlation energy, of the hydrogen molecule as a function of TD magnetic‐field strength, are analyzed through TD density functional computations based on a quantum fluid dynamics approach. The numerical computations are performed for internuclear separation R ranging from 0.1 to 14.0 a.u. The EPECs exhibit field‐dependent significant potential‐well minima both at large internuclear separations and at short internuclear separations with a considerable increase in the exchange and correlation energy of the hydrogen molecule. The results, when compared with the time‐independent (TI) studies involving static TI magnetic fields, reveal TD behavior of field‐dependent crossovers between different spin‐states of hydrogen molecule as indicated by the TI investigations in static magnetic fields. Besides this, present work reveals interesting dynamics in the TD total‐electronic charge‐density distribution of the hydrogen molecule. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

11.
采用密度泛函理论(DFT)B3LYP方法,6-311G(d,p)(C,H,O)/LANL2DZ(Ag)基组,计算了黄曲霉素B2(AFB2)分子吸附在Ag2团簇的表面增强拉曼散射(SERS)光谱和预共振拉曼光谱,并与实验结果比较. 结果显示:AFB2分子在基态Ag2团簇表面吸附时,增强因子最大达到102,对应吡喃(pyrane)环C=O伸缩振动,主要是由AFB2分子周围化学环境改变而引起的基态静极化率改变导致的化学增强. 不同激发波长下的AFB2分子预共振拉曼光谱的增强强度不同:电荷转移态激发波长为1144 和544 nm时拉曼信号增强了102倍,而选择电荷转移预共振波长432和410 nm作为入射光时,其拉曼信号增强了104倍,增强机理为银团簇和黄曲霉素分子之间的电荷转移共振增强. 因此通过改变入射光波长,选择电荷转移共振激发波长,更有利于强致癌物AFB2分子的痕量检测.  相似文献   

12.
The [Pt2(H2P2O5)4]4− ions in the ground and excited states and the excited-state complexes M-[Pt2(H2P2O5)4]3− and M2-[Pt2(H2P2O5)4]2− (M = Ag, Tl) were studied in solution with various density functional theory (DFT) functionals from Gaussian 09 and Amsterdam Density Functional (ADF) programs. Calculated results were compared with ultrafast X-ray solution scattering data. Time dependent DFT (TD-DFT) calculations with the B3PW91 functional and unrestricted open shell calculations with the mPBE functional produce good agreement with the experimental results. Compared to gas phase calculations, the surrounding solvent is found to play an important role to shorten the Pt-Pt and M-Pt (M = Ag, Tl) bond lengths, lowering the molecular orbital energies and influences the molecular orbital transitions upon excitation, which stabilizes the excited transient molecules in solution.  相似文献   

13.
运用广义梯度近似密度泛函理论方法(GGA-PW91)结合周期平板模型, 研究水分子在二氧化铪(111)和(110)表面不同吸附位置在不同覆盖度下的吸附行为. 通过比较不同吸附位的吸附能和几何构型参数发现:(111)和(110)表面铪原子(top 位)是活性吸附位. 水分子与表面的吸附能值随覆盖度的变化影响较小. 在(111)和(110)表面, 水分子都倾向以氧端与表面铪原子相互作用. 同时也计算了羟基、氧和氢在表面的吸附, Mulliken 电荷布居, 态密度及部分频率. 结果表明, 在两种表面羟基以氧端与表面铪相互作用, 氧原子与表面铪和氧原子同时成键, 而氢原子直接与表面氧原子相互作用形成羟基. 通过过渡态搜索, 水分子在(111)和(110)表面发生解离, 反应能垒分别为9.7和17.3 kJ·mol-1, 且放热为59.9和47.6 kJ·mol-1.  相似文献   

14.
利用密度泛函理论系统研究了不同覆盖度下HF在3F、2F、1F与Al 终端的α-AlF3(0001)表面的吸附行为, 分析了HF与不同终端表面相互作用的电子机制. 计算结果表明: HF在3F终端的α-AlF3(0001)表面物理吸附; 在2F及1F终端表面化学吸附, 形成Al-F键和FHF结构, 使HF分子活化, 可以参加下一步的氟化反应; 在Al 终端表面解离吸附形成Al-F与Al-H键. 3F、2F、1F及Al 终端表面配位不饱和数目分别为0、1、2与3配位.不同覆盖度研究表明, 在2F终端表面上, 吸附一个HF分子使表面Al 配位达到饱和, 后续吸附的HF为物理吸附; 而在1F与Al 终端表面仍可化学吸附. 因此, 推测α-AlF3暴露不同终端表面中Al 原子配位不饱和数越高, 其对HF吸附与活化能力越强, 可能的氟化催化反应活性越高. 差分电荷密度与电子态密度分析表明, HF与3F终端α-AlF3(0001)表面发生弱相互作用, 而与2F、1F与Al 终端表面形成较强的电子相互作用.  相似文献   

15.
The structures of paramagnetic complexes CuCl2?L with L = HetCH2Si(OCH2CH2)3N [Het = pyrrol-1-yl (1), indol-1-yl (2), carbazol-9-yl (3), imidazole-1-yl (4), 3,5-dimethylpyrazol-1-yl (5), 1,2,4-triazol-1-yl (6), benzimidazol-1-yl (7), and 1,2,3-benzotriazol-1-yl (8)] were studied by the ESR and quantum chemical methods in terms of the density functional theory (DFT) approximation. The difference in structures of complexes CuCl2?1—CuCl2?8 is mainly determined by the nature of the five-membered heterocycle. The ESR spectra at room temperature are typical of the mononuclear complexes of CuII of axial symmetry with various types of distortions. In complexes CuCl2?1—CuCl2?3, narrow symmetric signals of zero-valent copper are recorded. These signals remain in the spectra for at least six months, which can characterize them as efficient stabilizing matrices of nanoparticles.  相似文献   

16.
The calculations of the structure of dendrimer G1-8S-Dec (Si5C116H244S8) and its com-plexes with one, two, three, or four CuCl2 molecules were carried out for the first time using the density functional theory (DFT). The geometric structures of the complexes and the spin density distribution were determined. The states with the maximum multiplicity are most favorable for the complexes studied. The interaction energies of dendrimer G1-8S-Dec with CuCl2 molecules were calculated. Under standard conditions, the formation of complexes with a higher multiplicity of up to four CuCl2 molecules is most favorable. All the four considered complexes contain paramagnetic centers in which an unpaired electron is “local-ized” on the tetrahedra with the central Cu atom and two S atoms and two Cl atoms at the vertices of the tetrahedron.  相似文献   

17.
The He molecular ion exposed to a strong ultrashort time‐dependent (TD) magnetic field of the order of 109 G is investigated through a quantum fluid dynamics (QFD) and current‐density functional theory (CDFT) based approach using vector exchange‐correlation (XC) potential and energy density functional that depend not only on the electronic charge‐density but also on the current density. The TD‐QFD‐CDFT computations are performed in a parallel internuclear‐axis and magnetic field‐axis configuration at the field‐free equilibrium internuclear separation R = 1.3 au with the field‐strength varying between 0 and 1011 G. The TD behavior of the exchange‐ and correlation energy of the He is analyzed and compared with that obtained using a [B‐TD‐QFD‐density functional theory (DFT)] approach based on the conventional TD‐DFT under similar computational constraints but using only scalar XC potential and energy density functional dependent on the electronic charge‐density alone. The CDFT based approach yields TD exchange‐ and correlation energy and TD electronic charge‐density significantly different from that obtained using the conventional TD‐DFT based approach, particularly, at typical magnetic field strengths and during a typical time period of the TD field. This peculiar behavior of the CDFT‐based approach is traced to the TD current‐density dependent vector XC potential, which can induce nonadiabatic effects causing retardation of the oscillating electronic charge density. Such dissipative electron dynamics of the He molecular ion is elucidated by treating electronic charge density as an electron‐“fluid” in the terminology of QFD. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

18.
Vibrational analysis of tellurium tetrachloride, TeCl4, was performed with Hartree–Fock (HF), MP2, and generalized gradient approximation density functional theory (DFT) methods supplemented with polarized double-zeta split valence (DZVP) basis sets and relativistic effective core potentials (RECP) of Hay and Wadt. The molecular geometry is best reproduced at the HF and MP2/RECP+DZVP [polarized Hay and Wadt RECP for Te and 6–31G(d) basis set for Cl] levels of theory. The DFT methods gave rise to poorer results, especially those using Becke's 1988 exchange functional. Generally, the vibrational frequencies calculated by the MP2 and B3-type DFT methods with the all electron and RECP+DZVP basis sets as well as at the HF/RECP level were in satisfactory accord with the experimental data. The agreement was good enough to assist the assignment of the measured vibrational spectra. The best agreement with the experimental vibrational frequencies was achieved with the scaled HF/RECP force field. Consistent results were obtained for the unobserved A24) fundamental, where the results of the best methods were within 4 cm−1. The best force fields were obtained with the following methods: Becke3–Lee–Yang–Parr and Becke3–Perdew/all electron basis, MP2 and Becke3-Perdew/RECP+DZVP, and HF/RECP. The methods using RECPs are advantageous for large-scale computations. The RECP basis set effectively compensates the errors of the HF method for TeCl4; however, it provides poor results with correlated methods. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 308–318, 1998  相似文献   

19.
Isomerism of atomically precise noble metal nanoclusters provides an excellent platform to investigate the structure–property correlations of metal nanomaterials. In this study, we performed density functional theory (DFT) and time‐dependent (TD‐DFT) calculations on two Au21(SR)15 nanoclusters, one with a hexagonal closed packed core (denoted as Au21 hcp ), and the other one with a face‐centered cubic core (denoted as Au21 fcc ). The structural and electronic analysis on the typical Au–Au and Au–S bond distances, bond orders, composition of the frontier orbitals and the origin of optical absorptions shed light on the inherent correlations between these two clusters.  相似文献   

20.
Two series of linear ruthenium coordination oligomers, [(Ntpy)Run(tppz)n?1(tpy)]2n+ (mono‐Ntpy series, n=1–3) and [(Ntpy)2Run(tppz)n?1]2n+ (bis‐Ntpy series, n=1–3) have been prepared, where Ntpy is the capping ligand 4′‐di‐p‐anisylamino‐2,2′:6′,2′′‐terpyridine, tppz is tetra‐2‐pyridylpyrazine, and tpy is 2,2′:6′,2′′‐terpyridine. The electrochemical measurements evidence oxidation events from both the amine segments and the metal centers and reduction waves from tppz and the capping ligands. Both series complexes display much enhanced light absorption with respect to model complexes without terminal amine units. Density functional theory (DFT) calculations have been performed on both series and time‐dependent DFT (TD‐DFT) calculations have been performed on the bis‐Ntpy‐series compounds (n=1–4) to characterize their electronic structures and excited states and predict the electronic properties of long‐chain polymers. Upon one‐electron oxidation, the mono‐Ntpy‐series monoruthenium and diruthenium complexes display N+‐localized transitions and metal‐to‐nitrogen charge‐transfer (MNCT) transitions in the near‐infrared (NIR) region. DFT and TD‐DFT computations on the one‐electron‐oxidized forms of the mono‐Ntpy‐series compounds (n=1–4) provide insight into the nature of the MNCT transitions and the degree of charge delocalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号