首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanical and morphological characteristics of PA6/ABS (60/40)-based hybrid composite containing HNO3-treated short carbon fibers (HSCF) and CaCO3 nanoparticles have been experimentally studied. A counter-rotating twin-screw extruder and an injection molding machine were employed to produce different samples containing 10 wt % of HSCF and 0, 2, 5 and 8 wt % of CaCO3 nanoparticles. The SEM observations indicated high-quality adhesion between HNO3-surface treated carbon fibers and PA6/ABS polymer matrix. In addition, the morphological studies showed that the inclusion of CaCO3 nanoparticles caused a significant effect on the ABS particle dispersion in PA6/ABS matrix. The mechanical properties assessments revealed that the incorporation of 10 wt % HSCF into the PA6/ABS can significantly improve tensile strength (82%), tensile modulus (107%), flexural strength (98%), flexural modulus (104%) and impact resistance (24%). The inclusion of CaCO3 nanoparticles, in the presence of 10 wt % HSCF, led to the noticeable improvements of tensile strength (128% for 2 wt % CaCO3), tensile modulus (199% for 5 wt % CaCO3), flexural strength (146% for 5 wt % CaCO3), flexural modulus (204% for 5 wt % CaCO3) and impact resistance (46% for 2 wt % CaCO3). The surface treatment of carbon fibers, dispersion conditions of nanoparticles and ABS phase in polymeric matrix were found to be the major important factors affecting the mechanical properties.  相似文献   

2.
This study aimed to acquire a balance of mechanical properties comprising impact, tensile and flexural performances in PP based blend. In this respect, co-PP was employed as matrix because of its intrinsic high impact behavior. Hybrid nanocomposites based on co-PP and containing 10 wt % micron-sized short glass fibers (GF) and 2 to 8 wt % nano precipitated CaCO3 (NPCC) particles were produced by applying a two-step melt compounding method. Maleic anhydride grafted polypropylene (MAPP) was used as compatibilizer. Strong glass fiber-matrix adhesion and relatively uniform distribution of nano-CaCO3 particles were observed in SEM images. The maximum tensile strength was observed in co-PP hybrid nanocomposite containing 10 wt % glass fiber and 5 wt % nano-CaCO3 which was 58% more than that of neat co-PP. Flexural strength raised as much as 11% by adding glass fiber. The maximum flexural strength was obtained by incorporating 10 wt % glass fiber and 8 wt % nano-CaCO3 into co-PP matrix which was 24% higher than that of neat co-PP. The impact strength decreased upon addition of 10 wt % glass fiber and 5 and 8 wt % nano-CaCO3, this was attributed to the inherent high impact behavior of co-PP as well as strong interfacial interaction between dispersed phases and polymeric matrix.  相似文献   

3.
An amphiphilic derivative of carboxymethylchitosan (CMCS), (2-hydroxyl-3-butoxyl)propyl-CMCS (HBP-CMCS), was used as an organic additive in the precipitation process of calcium carbonate (CaCO3). HBP-CMCS molecules can interact with calcium ions, the functional groups of which act as active sites for the nucleation and crystallization of CaCO3. Simultaneously, HBP-CMCS molecule also functionalizes as a colloidal stabilizer to prohibit the sedimentation of the grown CaCO3 crystals, depending upon the molar ratio of the initial Ca2+ ions to the repeat units of HBP-CMCS molecules. The combination investigations of scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy on the precipitated CaCO3 crystals proved that concentrations of HBP-CMCS and Ca2+ exert great influence on the crystallization habit of CaCO3, such as the nucleation, growth, morphology, crystal form, etc. The formation of the peanut-shaped CaCO3 particles suggests the template effect of HBP-CMCS molecules on the aggregation behavior of CaCO3 nanocrystals.  相似文献   

4.
Summary The influence of calcium carbonate nanoparticles with different shapes (spherical and elongated) on the thermal properties and crystallization behavior of isotactic polypropylene was investigated. CaCO3 nanoparticles were covered by an appropriate coating agent to improve the interfacial adhesion between the filler and the polyolefin matrix. The nanocomposites were prepared by melt mixing and subsequent compression molding. A remarkable effect of CaCO3 on the thermal properties of iPP was observed. Moreover, the analysis of crystallization kinetics showed that CaCO3 nanopowder coated with PP-MA are efficient nucleating agents for iPP, and the overall crystallization rate results higher than plain iPP.  相似文献   

5.
Pyruvic acid contains three different reactive positions: –COOH, ketone carbonyl and methyl groups. Correspondingly, pyruvic acid was applied as starting material in the modified Niementowski reaction and Aldol condensation using SBA-Pr-SO3H as an efficient nanocatalyst. Aldol condensation of pyruvic acid and oxindole provided a new oxindol-based carboxylic acid which was subsequently used in the Ugi four-component reaction. Moreover, through the modified Niementowski reaction of pyruvic acid, new derivatives of quiazoline were produced in the presence of SBA-Pr-SO3H. The obtained products are important due to their potentially biological active skeletons.  相似文献   

6.
The influence of nanostructured CaCO3 particles, both uncoated and coated with a polyelectrolyte (poly(diallyldimethylammonium chloride), polyethyleneimine, fluorescein-5-isothiocyanate-labeled poly(allylamine hydrochloride), or sodium polystyrene sulfonate), on a stearic acid monolayer spread on the surface of an aqueous subphase has been studied. The interaction of the particles present in the subphase with the monolayer as depending on the presence and composition of a polymer coating has been estimated with the help of compression isotherms and the Brewster angle microscopy. The monolayers were transferred from the aqueous subphase onto a solid substrate and studied by scanning electron microscopy. Strong interaction has been revealed between the calcium carbonate particles and the stearic acid monolayer. It has been shown that the transfer of the monolayer from the aqueous suspension surface onto the solid substrate may be accompanied by the detachment of the polymer coating from the surface of CaCO3 particles or their transfer together with the monolayer.  相似文献   

7.
DU  Zhuwei  LU  Cuixiang  LI  Haoran  LI  Dingjie 《中国化学》2009,27(11):2237-2241
Hydrogels have been thought to be the material which can provide appealing replacements of biological organisms. Pores of hydrogels synthesized from lyotropic liquid crystalline (LLC) templates were smaller in size and more uniform than those of traditional hydrogels. LLC poly‐acrylamide (PAAm) hydrogels were used as the growth media of CaCO3. After copolymerized with acrylic acid and 2‐acrylamido‐2‐methylpropanesulfonic acid (AMPS), LLC hydrogels were modified with COOH and SO3H, respectively. The effect of functional groups on the biomimetic mineralization of CaCO3 was studied. Most of crystals from traditional hydrogels are rhombohedral and could not form aggregates. Only a few could aggregate and have a particular morphology with irregular orientation of subcrystal. Compared with crystals separated from traditional hydrogels, crystals growing in the LLC hydrogels were much more regulated and could form aggregates with particular morphology and regular orientation, that is, face (104) of rhombohedral subcrystals parallel to the surface of the macrocrystals. Modification of COOH and SO3H groups made CaCO3 subcrystal align more tightly. COOH had minor influences on the crystal orientation and small modification to the aggregate morphology. SO3H groups could change the crystal orientation and morphology effectively. The aggregates are pseudo‐spherical and the face perpendicularity to the face (104) parallels to the surface of the aggregates.  相似文献   

8.
This work presents the first investigation of a halo-carboxylic acid (Br-CH2COOH) over the surface of an oxide single crystal (the {011}-faceted TiO2(001) single crystal). A very rich chemistry is observed. This is broadly divided into three categories: elimination of HBr to make ketene, dimerisation of two molecules of ketene to 4-methyl-2-oxetanone and 1,3-cyclobutanedione, and further reaction of the latter to a mass spectrometer m/e 70 signal attributed to crotonaldehyde (formed by ring opening). Temperature programmed desorption (TPD) and Scanning Kinetic Spectroscopy (SKS) gave complementary results with SKS opening a simple way for investigating surface chemical reactions in UHV conditions with high surface coverage at still high temperatures. A successful modeling of SKS data was conducted providing the activation energies (E a) for ketene desorption, with a reaction order n close to 1, for both CH3COOH (E a = 21.3 kcal/mol) and BrCH2COOH (E a = 17.2 kcal/mol). In order to further understand the surface reaction of BrCH2COOH semi-empirical PM3 computation of its adsorption and reaction on a Ti8O29H26 cluster representing the (011) TiO2 surface was conducted and compared to that of CH3COOH on the same cluster. Dissociative adsorptions of both the O-H and C-Br bonds are more stable than the non-dissociative adsorption modes. The di-coordinated species, TiOC(O)CH2Os, formed by the simultaneous dissociation of both C-Br and O-H bonds of BrCH2COOH appears the most plausible surface intermediate for the observed carbon coupling reactions.  相似文献   

9.
The crystallization polytherm of the ternary CO(NH2)2–KNO3–H2O system is plotted for the first time via visual polythermal analysis and calculating ternary eutonics characteristics from data on the boundary elements of two-component systems. The ternary eutonics modeling error does not exceed 3.5%. In addition to the crystallization fields of individual components, the field of the redox reaction that occurs in the system between potassium nitrate and carbamide is shown in the CO(NH2)2–KNO3–H2O diagram by a dashed outline.  相似文献   

10.
The reaction of a sulfur and oxygen-bridged 8-quinolinolato trinuclear molybdenum cluster [Mo3OS3(qn)3(H2O)3]+ (3; Hqn = 8-quinolinol) with equimolar amounts of acetylene carboxylic acid, 4-pentynoic acid, 5-hexynoic acid, acetic acid, and pimelic acid gave clusters having μ-carboxylato groups, [Mo3OS3(qn)3(H2O)(μ-HC≡CCOO)] (6), [Mo3OS3(qn)3(H2O)(μ-HC≡C(CH2)2COO)] (7), [Mo3OS3(qn)3(H2O)(μ-HC≡C(CH2)3COO)] (8), [Mo3OS3(qn)3(H2O)(μ-CH3COO)] (4), and [{Mo3OS3(qn)3(C2H5OH)}2(μ-C7H10O4)] (5), respectively. X-ray structural analyses, 1H NMR, and electronic spectra of these clusters made clear that each of the COO groups of the reagents bridges two Mo atoms in each cluster and that no adduct formation occurred at the sulfurs in the clusters. The reaction of 3 with a large excess-molar amount (50 times) of acetylene carboxylic acid gave [Mo3OS(μ3-SCH=C(COOH)S)(qn)3(H2O)(μ-HC≡CCOO)] (9) with two molecules of acetylene carboxylic acid, one acting as a carboxylato bridge and the other in adduct formation, as supported by the electronic and 1H NMR spectra. The corresponding aqua cluster [Mo3OS3(H2O)9]4+ (1), on the contrary, reacts with acetylene carboxylic acid to give adduct [Mo3OS(μ3-SCH=C(COOH)S)(H2O)9]4+ (2). Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
碳纳米管(CNTs)混酸(H2SO4/HNO3, 体积比为3:1)超声辅助纯化及氧化植入活性基团-COOH, 进一步借助其转化为酰氯基团, 分别于CNTs 表面共价嫁接亲水性赖氨酸及亲脂性正十八胺基团, 赋予赖氨酸表面改性CNTs 显著水溶(6.85 mg·mL-1)和十八胺表面改性CNTs 显著醇溶(10.15 mg·mL-1)性能. 运用低温水热法以亲水性CNTs 复合TiO2, 溶胶-凝胶法以亲脂性CNTs 复合TiO2, 观察到复合催化剂光催化性能随CNTs 溶剂分散性能增加而明显提升. 运用傅里叶变换红外(FTIR)、激光拉曼、X射线衍射(XRD)、Brunauer-Emmett-Teller 低温氮气吸附、透射电镜(TEM)及X光电子能谱(XPS)等手段表征, 系统探讨CNTs 的表面改性机制及CNTs 溶解分散性能与复合催化剂的光活性的关联. 认为表面改性CNTs 借助Ti-O-C键合促进其与纳米TiO2的异质结合, 从而充分利用CNTs的大比表面积及电荷传输性能促进催化剂的污染物光催化降解.  相似文献   

12.
《Supramolecular Science》1998,5(3-4):411-415
The effects of macromolecules as soluble additives and solid matrices have been examined for the crystallization of CaCO3. A vaterite form grows on a glass substrate in the presence of poly(glutamic acid) (PGA) containing a carboxylic acid group as a soluble additive. In contrast, no crystal growth has been observed when poly(acrylic acid) (PAA) exists as an additive though it has the same functional group. The conformation or the backbone structure of the polymers may have an influence on the crystal polymorph of CaCO3. Thin film states of CaCO3 crystals have been obtained as organic/inorganic composites with chitosan that acts as a solid matrix in the presence of PAA or PGA as a soluble additive.  相似文献   

13.
Photo‐oxidative degradation of treated and untreated nano CaCO3: silicone rubber composite was studied under accelerated UV irradiation (≥290 nm) at different time intervals. Prolonged exposure to UV leads to a progressive decrease in mechanical and physical properties along with the change in behavior of filler‐matrix interaction. This was due to decrease in cross‐linking density with increase in mobility of rubber chains. Meanwhile, synthesized nano CaCO3 was modified with stearic acid for uniform dispersion in rubber matrix. The increase in carbonyl (>CO), hydroxyl (? OH), CO2, and alkene functional groups on the UV exposed surface of treated and untreated nano CaCO3: silicone rubber composites at different time intervals was studied using Fourier transform infrared (FTIR) spectroscopy. The change in morphological behavior of filler‐matrix interaction after UV exposure was studied using SEM. Overall, the study showed that the treated nano CaCO3: silicone composites were affected more by UV exposure than untreated nano CaCO3: silicone composites and pristine composite after UV exposure. This effect was due to peeling of stearic acid from the surface of CaCO3, which makes the rubber chains slippery and thus separation of filler and rubber chains takes place with initiation of fast‐degradation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
The behavior of the [B12H12]2– anion in CH3CN, CF3COOH, and the CH3CN/CF3COOH system is studied by IR spectroscopy. Based on the IR spectroscopy data correlated with the data obtained when studying the protonation processes of boron cluster anions [B6H6]2– and [B10H10]2–, the possibility to prepare the protonated form of the closo-dodecaborate anion, namely monoanion [B12H13], is concluded in CF3COOH and the CH3CN/CF3COOH system. In the IR spectra of salts of the protonated forms of anions [BnHn]2– (n = 6, 10, 12) in solutions and Nujol mulls, a high-frequency shift of the ν(BH) absorption bands is observed as compared with the spectra of salts of non-protonated anions Cat2[BnHn] (Δν = 70–100 cm–1).  相似文献   

15.
Composition and properties were studied of products formed in treatment of solid Na2CO3 with aqueous solutions containing acetic and citric acids with mass fractions of 0.40–0.60 and 0.33–0.49, respectively, at a Na2CO3/H x An molar ratio of 2–6, where H x An = CH3COOH and H3(C6H5O7). It was found that the content of water in the systems under study and the strength of an acid affect the yield of the double salt of carbonic acid, Na2CO3·NaHCO3·2H2O and the composition of derivative proton-containing compounds. It is noted that sodium sesquicarbonate can be formed both by the crystallization mechanism and via a transformation of the primary structure of sodium carbonate. In the resulting powder-like products, water introduced with the acid solution is predominantly consumed for formation of crystal hydrates of carbonate-containing and derivative proton-containing compounds. The hygroscopic point of the resulting salt formulations was determined to be at a level of 70–75%. It was noted that sesquicarbonate-containing salt formulation formed in “dry” neutralization of sodium carbonate by acid solutions can be regarded as a builder for obtaining synthetic household detergents.  相似文献   

16.
Inorganic pigments containing lanthanides based on orthorhombic perovskite structure of CaSnO3 have been prepared by solid state reaction of CaCO3, SnO2 and lanthanide oxides (Tb4O7, Pr6O11, CeO2). The TG-DTA analysis indicates the formation of Ca-stannates around of temperature 1200°C, but from the pigmentary — application point of view, it is better to synthesize the product at higher temperature (1400 or 1500°C). The resultant materials were characterised by XRD, particle size distribution and measurement of colour properties. The doping of Ca-stannates by ions of rare earth elements (Tb, Pr, Ce) brings the production of two-and three-phase systems. The most interesting colour properties provided the stannate doped by ions of terbium and cerium and synthesized by heating at temperature 1400°C. The pigment has reddish brown colour hue.  相似文献   

17.
The attempt to prepare structurally well-defined polymer/inorganic composite particles, i.e., poly(methyl methacrylate) (PMMA)/CaCO3/SiO2 three-component composite particles, via reverse atom transfer radical polymerization (ATRP), using 2-2′-azo-bis-isobutyronitrile as initiator and Cu(II) bromide as catalyst was reported. CaCO3/SiO2 two-component composite particles were first obtained through sol–gel method, and their morphology and surface element information were determined by transmission electron microscopy and X-ray photoelectron spectroscopy, respectively. The results indicate that the CaCO3 was encapsulated by the obtained SiO2. After being modified by silane coupling agent, the CaCO3/SiO2 composite particles copolymerized with methyl methacrylate (MMA) under standard reverse ATRP conditions to produce PMMA/CaCO3/SiO2 three-component composite particles. In the case concerned, first-order kinetic plots and linear increase of molecular weight (Mn) vs conversion and narrow molecular weight distribution for the graft polymer samples were observed. Furthermore, the gel permeation chromatography results illustrated that both the free PMMA chains from the solvent and the graft PMMA chains from the surface of CaCO3/SiO2 two-component composite particles were growing at the same rate. Characterizations of the PMMA-grafted CaCO3/SiO2 composite particles were done by Fourier transform infrared and thermogravimetric analysis. The results showed that the surface of the modified inorganic particles was grafted by the MMA and that the grafting percentage was about 8.7%.  相似文献   

18.
We accomplished a synthesis of the two-component vanadium-chromium containing monolayer on the silica surface by treating the latter with a mixture of CrO2Cl2 and VOCl3 vapors. Analysis of the chemical reactions on the substrate surface is carried out using quantum-chemical modeling. The calculated VOCl3 reactivity is higher than that of CrO2Cl2, which requires the use of an excess of the chromium oxychloride in the reaction mixture to provide a control over the coating composition in a wide range of concentrations. The quantitative forecast of the reaction product composition indicates a significant role of the synthesis temperature and structural strain at the formation of the monolayer. We carried out an experimental synthesis of the two-component coating by the method of molecular layering (ML) under the conditions derived from quantum-chemical predictions, at a concentration ratio of chromium and vanadium in the range from 0.5 to 2.6, and showed the ability of control over the product composition. Based on a comparison of experimental and calculated data the structural strains and the quantitative ratio of the surface centers of different local structure were estimated. The results obtained using infrared Fourier spectroscopy confirm the agreement between the experimental data and the quantum-chemical predictions.  相似文献   

19.
The properties of octadecanoic acid-otctadecylamine monolayers and growth of calcium carbonate (CaCO3) induced by the monolayers on the surface of supersaturated CaCO3 solution with N,O-carboxymethyl chitosan (CMC) are studied. The results suggest that CMC is either adsorbed on or inserted into the monolayers, as is confirmed by π-A, dπ/dA-A, and π-t isotherms. The adsorption of CMC changes the properties of the monolayers, a process that results in the transformation of the shape of CaCO3 particles from crystal-like into the fractal pattern beneath the monolayers. Different fractal morphologies, such as butterfly and wicker branches consisting of hollow ellipsoidal, solid ellipsoidal, and spherical particles, correspondingly, are observed; these morphologies depend on the CMC concentration in the subphase. The dimensions of fractal patterns are determined. The mechanisms of the formation of CaCO3 crystals and fractal structures are discussed. The text was submitted by the authors in English.  相似文献   

20.
The electrochemical behavior of copper(II), zinc(II), and thiosulfate (S2O3 2-) ions on the molybdenum electrode in individual 0.2 М sodium sulfate solutions (рН 6.7) and with addition of either 0.1 М tartaric acid (рН 4.6) or 0.1 М citric acid (рН 4.7) is studied. A one-step electrochemical method is developed for the deposition of thin Cu2ZnSnS4 films, which is carried out on the molybdenum electrode at a constant potential in sodium sulfate solutions containing tartaric acid. The effect of the concentration of electrolyte components on the chemical composition of Cu2ZnSnS4 films is determined. The phase composition is confirmed by the Raman spectroscopy data. The surface morphology of synthesized films is studied by means of scanning-electron and atomic-force microscopes. The photoelectrochemical characteristics of Cu2ZnSnS4 films are determined. Samples of these coatings on the Mo electrode are found to be highly photosensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号