首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 In this article, we construct self-dual N-vortex solutions with a large magnetic flux Φ of (2+1)-dimensional relativistic Chern-Simons model, provided that the coupling constant κ is small and the cites of vorticity satisfies
. Our solutions exhibit the bubbling phenomenon at each p j . Near each vortex p j , solutions are locally asymptotically symmetric with respect to p j , and the curvature F 12 tends to a sum of Dirac measures as κ tends to zero. By a heuristic argument, it is shown that (0.1) is also a necessary condition for the existence of multi-vortex solutions which has a locally asymptotically symmetric vortex at . Received: 20 August 2001 / Accepted: 31 December 2001 Published online: 29 October 2002 RID="*" ID="*" Partially supported by National Center for Theoretical Sciences of NSC, Taiwan.  相似文献   

2.
The structure of the zero modes in a discrete (2+1)-dimensional model of the gauge-invariant nonlinear Schrödinger equation is studied. Including the compactification of the Chern-Simons gauge fields eliminates the difficulties with the continuous model [L. A. Abramyan and A. P. Protogenov, JETP Lett. 64, 859 (1996); L. A. Abramyan, V. I. Berezhiani, and A. P. Protogenov, Phys. Rev. E 56, 6026 (1997)] and leads to a prediction of the existence of a transition region characterized by a hierarchical sequence of collapses which are enumerated by the Chern-Simons coefficient. Using the zero modes in calculating the dependence of the critical power N on the Chern-Simons coefficient, we have found that the transition region lies in the interval 11.703≤N≤12.01.  相似文献   

3.
We extend previous work on N=2 Chern-Simons theories coupled to a single adjoint chiral superfield using localization techniques and the F-maximization principle. We provide tests of a series of proposed 3D Seiberg dualities and a new class of tests of the conjectured F-theorem. In addition, a proposal is made for a modification of the F-maximization principle that takes into account the effects of decoupling fields. Finally, we formulate and provide evidence for a new general non-perturbative constraint on spontaneous supersymmetry breaking in three dimensions based on Q-deformed S3 partition functions. An explicit illustration based on the known analytic solution of the Chern-Simons matrix model is presented.  相似文献   

4.
The existence of topological solutions for the Chern-Simons equation with two Higgs particles has been proved by Lin, Ponce and Yang [16]. However, both the uniqueness problem and the existence of non-topological solutions have been left open. In this paper, we consider the case of one vortex at origin. Among others, we prove the uniqueness of topological solutions and give a complete study of the radial solutions, in particular, the existence of some non-topological solutions.  相似文献   

5.
We review the background field method for three-dimensional Yang-Mills and Chern-Simons models in N = 2 superspace. Superfield proper time (heat kernel) techniques are developed and exact expressions of heat kernels for constant backgrounds are presented. The background field method and heat kernel techniques are applied for evaluating the low-energy effective actions in N = 2 supersymmetric Yang-Mills and Chern-Simons models as well as in N = 4 and N = 8 SYM theories.  相似文献   

6.
《Annals of Physics》1985,162(2):413-440
Classical solutions to (2 + 1)-dimensional Yang-Mills theory in the presence of the Chern-Simons invariant are considered. The SO(3)-invariant solutions to the Euclidean field equations are complex, whereas the equations in Minkowski space-time possess real SO(2, 1)-invariant solutions. The field equations for time independent axially symmetric vector potentials are derived and some solutions are obtained. The behavior of general Euclidean spacetime solutions is discussed. It is also shown that, because of the gauge dependence of the Chern-Simons invariant, the reduced field equations cannot be uniquely obtained from the reduced action. Applications of the results to the infrared structure of finite temperature QCD are discussed; in particular, it is argued that the Chern-Simons invariant cannot be consistently incorporated as a gauge-invariant magnetic mass term in a three-dimensional effective long distance theory at high temperatures.  相似文献   

7.
We develop the superfield background field method and study the effective action in the N = 2, d3 supersymmetric Chern-Simons-matter systems. The one-loop low-energy effective action for non-Abelian supersymmetric Chern-Simons theory is computed to order F 4 by use of N = 2 superfield heat kernel techniques.  相似文献   

8.
We consider the canonical Gibbs measure associated to aN-vortex system in a bounded domain Λ, at inverse temperature \(\widetilde\beta \) and prove that, in the limitN→∞, \(\widetilde\beta \) /N→β, αN→1, where β∈(?8π, + ∞) (here α denotes the vorticity intensity of each vortex), the one particle distribution function ?N = ? N x,x∈Λ converges to a superposition of solutions ? α of the following Mean Field Equation: $$\left\{ {\begin{array}{*{20}c} {\varrho _{\beta (x) = } \frac{{e^{ - \beta \psi } }}{{\mathop \smallint \limits_\Lambda e^{ - \beta \psi } }}; - \Delta \psi = \varrho _\beta in\Lambda } \\ {\psi |_{\partial \Lambda } = 0.} \\ \end{array} } \right.$$ Moreover, we study the variational principles associated to Eq. (A.1) and prove thai, when β→?8π+, either ?β → δ x 0 (weakly in the sense of measures) wherex 0 denotes and equilibrium point of a single point vortex in Λ, or ?β converges to a smooth solution of (A.1) for β=?8π. Examples of both possibilities are given, although we are not able to solve the alternative for a given Λ. Finally, we discuss a possible connection of the present analysis with the 2-D turbulence.  相似文献   

9.
We obtain BPS configurations of the BLG theory and its variant including mass terms for scalars and fermions in addition to a background field with different world-volume and R-symmetries. Three cases are considered, with world-volume symmetries SO(1,1) and SO(2) and preserving different amounts of supersymmetry. In the former case we obtain a singular configuration preserving N=(3,3) supersymmetry and an one-quarter BPS configuration corresponding to intersecting M2-M5-M5-branes. In the latter instance the BPS equations are reduced to those in the self-dual Chern-Simons theory with two complex scalars. In want of an exact solution, we find a topological vortex solution numerically in this case. Other solutions are given by combinations of domain walls.  相似文献   

10.
The two-dimensional self-dual Chern-Simons equations are equivalent to the conditions for static, zero-energy solutions of the (2+1)-dimensional gauged nonlinear Schrödinger equation with Chern-Simons matter-gauge dynamics. In this paper we classify all finite chargeSU(N) solutions by first transforming the self-dual Chern-Simons equations into the two-dimensional chiral model (or harmonic map) equations, and then using the Uhlenbeck-Wood classification of harmonic maps into the unitary groups. This construction also leads to a new relationship between theSU(N) Toda andSU(N) chiral model solutions.This work is supported in part by funds provided by the U.S. Department of Energy (D.O.E.) under contract #DE-AC02-76ER03069, and NSF grant #87-08447  相似文献   

11.
We prove the existence of equilibria of the N-vortex Hamiltonian in a bounded domain ${\Omega\subset\mathbb{R}^2}We prove the existence of equilibria of the N-vortex Hamiltonian in a bounded domain W ì \mathbbR2{\Omega\subset\mathbb{R}^2} , which is not necessarily simply connected. On an arbitrary bounded domain we obtain new equilibria for N = 3 or N = 4. If Ω has an axial symmetry we obtain a symmetric equilibrium for each N ? \mathbbN{N\in\mathbb{N}} . We also obtain new stream functions solving the sinh-Poisson equation -Dy = rsinhy{-\Delta\psi=\rho\sinh\psi} in Ω with Dirichlet boundary conditions for ρ > 0 small. The stream function yr{\psi_\rho} induces a stationary velocity field vr{v_\rho} solving the Euler equation in Ω. On an arbitrary bounded domain we obtain velocitiy fields having three or four counter-rotating vortices. If Ω has an axial symmetry we obtain for each N a velocity field vr{v_\rho} that has a chain of N counter-rotating vortices, analogous to the Mallier-Maslowe row of counter-rotating vortices in the plane. Our methods also yield new nodal solutions for other semilinear Dirichlet problems, in particular for the Lane-Emden-Fowler equation -Du=|u|p-1u{-\Delta u=|u|^{p-1}u} in Ω with p large.  相似文献   

12.
Using D-brane physics, we study fractional quantum Hall solitons (FQHS) in ABJM-like theory in terms of type IIA dual geometries. In particular, we discuss a class of Chern-Simons (CS) quivers describing FQHS systems at low energy. These CS quivers come from R-R gauge fields interacting with D6-branes wrapped on 4-cycles, which reside within a blown up CP3 projective space. Based on the CS quiver method and mimicking the construction of del Pezzo surfaces in terms of CP2, we first give a model which corresponds to a single layer model of FQHS system, then we propose a multi-layer system generalizing the doubled CS field theory, which is used in the study of topological defect in graphene.  相似文献   

13.
We investigate the dynamics of a state of N vortices, placed at the initial instant at small distances from some point, close to the “weight center” of vortices. The general solution of the time-dependent Ginsburg-Landau equation for N vortices in a large time interval is found. For N = 2, the position of the “weight center” of two vortices is time independent. For N ≥ 3, the position of the “weight center” weakly depends on time and is located in the range of the order of a 3, where a is a characteristic distance of a single vortex from the “weight center.” For N = 3, the time evolution of the N-vortex state is fixed by the position of vortices at any time instant and by the values of two small parameters. For N ≥ 4, a new parameter arises in the problem, connected with relative increases in the number of decay modes.  相似文献   

14.
We apply the coadjoint orbit method to construct relativistic nonlinear sigma models (NLSM) on the target space of coadjoint orbits coupled with the Chern-Simons (CS) gauge field and we study self-dual solitons. When the target space is given by a Hermitian symmetric space (HSS), we find that the system admits self-dual solitons whose energy is Bogomol'nyi bounded from below by a topological charge. The Bogomol'nyi potential on the Hermitian symmetric space is obtained in the case when the maximal torus subgroup is gauged, and the self-dual equation in the CP(N − 1) case is explored. We also discuss the self-dual solitons in the case of noncompact SU(1, 1) and present a detailed analysis for the rotationally symmetric solutions.  相似文献   

15.
We present some new solutions of the equations of the N=4 supergravity theory which represent black holes with scalar, electric and magnetic charges. The solutions are parameterized by the mass and 6 electric and 6 magnetic charges which can be assembled into a complex 6-vector, ZN. One can act on the solutions with SO(6)×U(1) to obtain new solutions with the same mass M but charges ZN related by SO(6)×U(1) transformations, the U(1) factor corresponding to the duality subgroup of the hidden SU(1, 1) ssymetry of the N=4 model. In a certain limiting case the black holes have zero temperature and behave like solitons. In this case multisoliton solutions are exhibited which antigravitate, i.e. are in static equilibrium. We also present some solutions of the Kaluza-Klein theory which were anticipated by Scherk which also antigravitate. However, these latter solutions contain naked singularities. A discussion is also given of the relation of these solutions to dimensional reduction which has relevance for the black holes in the N=8 supergravity theory.  相似文献   

16.
《Physics letters. [Part B]》1988,209(4):507-512
We calculate the correlation functions of the U(N) Thirring model and the associated Wess-Zumino-Witten model in terms of bosons on the torus TN×TN. The correlation functions are the solutions for the Knizhnik and Zamolodchikov equations of the U(1) current algebras.  相似文献   

17.
《Nuclear Physics B》1995,435(3):637-658
Strongly coupled massive SU(NC) and U(NC) QCD3 on a lattice is studied using the 1/NC expansion. The quark mass terms have a definite sign in the present model, and therefore the system explicitly breaks the parity symmetry. The continuum counterpart generates the Maxwell + Chern-Simons theory by integrating out the quark field. In the present paper, we shall integrate out the gauge fields using the strong-coupling expansion and obtain a frustrated quantum Heisenberg model as an effective model. The ground state of the above effective quantum spin model is studied using the large-NC approximation. There are two phases; one is a Neel-ordered state and the other is a state with a chiral-spin order. It is explicitly shown that the chiral-spin ordered state corresponds to a state with spontaneous generation of color magnetic flux in the original theory and fractional statistics appears in that phase. This result strongly suggests that there are (at least) two phases in the massive QCD3 and Maxwell-CS theory. One is the confinement phase and the other is the perturbative deconfinement phase with fractional-statistics excitations.  相似文献   

18.
《Nuclear Physics B》1999,552(3):677-706
The quantum mechanics and thermodynamics of SU(2) non-Abelian Chern-Simons particles (non-Abelian anyons) in an external magnetic field are addressed. We derive the N-body Hamiltonian in the (anti-) holomorphic gauge when the Hilbert space is projected onto the lowest Landau level of the magnetic field. In the presence of an additional harmonic potential, the N-body spectrum depends linearly on the coupling (statistics) parameter. We calculate the second virial coefficient and find that in the strong magnetic field limit it develops a step-wise behavior as a function of the statistics parameter, in contrast to the linear dependence in the case of Abelian anyons. For small enough values of the statistics parameter we relate the N-body partition functions in the lowest Landau level to these of SU(2) bosons and find that the cluster (and virial) coefficients dependence on the statistics parameter cancels.  相似文献   

19.
Two-dimensional Euclidean CP N?1 ffields are conformal-transformed into fields with periodic spatial (crystal-like) structures, both at zero temperature and at finite temperature. Specific solutions of the crystal-like CP N?1 model are discussed  相似文献   

20.
A simple systematic method to derive superspace constraints is presented. Constraints are given for extended supergravity with one- and two-form gauge potentials in four space-time dimensions. The natural constraints lead to equations of motion forN>4 (supergravity), resp.N>2 (gauge potentials). We discuss modifications for higherN. We also discuss modifications of the field strength of the two-form potential to include Chern-Simons three-forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号