首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Solid State Sciences》2001,3(4):495-502
The stability of yttrium silicate apatite has been investigated by studying the influence of iron as a “stabilising cation” and also by using different synthesis routes. The formation of apatite in samples has been followed by X-ray diffraction and by 29Si MAS NMR spectroscopy. The apatite phase appears to be stable at high temperatures (≈1700 °C) especially when heated in a nitrogen atmosphere; it can also occur in a metastable state when heated in air at lower temperatures; ≈1600 °C if prepared from a Y2O3SiO2 mixture or in the range 950 °C <T< 1150 °C if synthesised by the sol–gel process. Longer heat-treatments result in its decomposition into Y2Si2O7 and Y2SiO5. Iron appears to have two roles depending on the temperature; it stabilises the apatite phase at high temperatures when produced by the sol–gel route and catalyses the decomposition of sol–gel derived apatite at low temperatures.  相似文献   

2.
The oxidation behaviour of a B4C based material was investigated in a dry atmosphere O2(20 vol.%)-CO2(5 vol.%)-He and also in the presence of moisture H2O (2.3 vol%) as boron oxide is very sensitive to water vapour. The mass changes of samples consisting of a chemical vapour deposit of B4C on silicon nitride substrates were continuously monitored in the range 500–1000°C during isothermal experiments of 20 h. The stability of boron oxide formed by oxidation of B4C was also studied in dry and wet atmospheres to explain the kinetic curves. In both atmospheres, oxidation is diffusion controlled at 700 and 800°C and enhanced by water vapour. At 900°C and higher temperatures, boron oxide volatilisation and consumption by reaction with water vapour modifies the properties of the oxide film and the material is no more protected. At 600°C, B4C oxidation is weak but the process remains diffusion controlled in dry conditions as boron oxide volatilisation is negligible. However, in the presence of water vapour, B2O3 consumption rate is significant and mass losses corresponding to this consumption and to the combustion of the excess carbon are observed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The high-temperature oxidation behaviour of CoCrNi, CoCrNiMn, and CoCrNiMnFe equimolar alloys was investigated. All three alloys have a single-phase face-centred cubic structure. Thermogravimetric analyses (TGA) were conducted at temperatures ranging from 800 to 1000 °C for 24 h in dry air. The kinetic curves of the oxidation were measured by TGA, and the microstructure and chemical element distribution in different regions of the specimens were analysed. The oxidation kinetics of the three alloys followed the two-stage parabolic rate law, with rate constants generally increasing with increasing temperature. CoCrNi displayed the highest resistance to oxidation, followed by CoCrNiMnFe and CoCrNiMn exhibiting the least resistance to oxidation. The addition of Mn to CoCrNi increased the oxidation rate. The oxidation resistance of CoCrNiMn was enhanced by the addition of Fe. Less Mn Content and the formation of more Cr2O3 were responsible for the reduction in the oxidation rates of CoCrNiMnFe. The calculated activation energies of CoCrNiMn and CoCrNiMnFe at 800, 850 and 900 °C were 108 and 137 kJ mol?1, respectively, and are comparable to that of Mn diffusion in Mn oxides. The diffusion of Mn through the oxides at 800–900 °C is considered to be the rate-limiting process. The intense diffusion of Cr at 1000 °C contributed to the formation of CrMn1.5O4 spinel with Mn in the outer layer of CoCrNiMn and Cr2O3 in the outer layer of CoCrNiMn.  相似文献   

4.
Heat capacities have been measured for single crystals of V2O3, either pure or doped with 1 and 1.4 mole% Cr2O3 and Al2O3 over the temperature range 100–700°K. V2O3 undergoes a fairly sharp transition at low temperatures (~170°K) but fails to exhibit any thermal anomaly above 300°K. The thermal behavior of (MxV1?x)2O3, M = Cr, Al, is manifested by two transitions: one at low temperatures, 170–180°K for x = 0.01 and 180–190°K for x = 0.014, and the other at high temperatures. For x = 0.01, the high-temperature (HT) anomaly extended over the range 325–345°K (Cr-doped V2O3) and 345–365°K (Al-doped V2O3), respectively. The corresponding ranges for x = 0.014 were found to be 260–280°K and 270–290°K, respectively. Further, the HT anomaly was characterized by a large hysteresis (~50°K). The values of lattice heat capacity of pure and doped V2O3 were, however, found to be almost the same and could be empirically represented by the Debye (D)?Einstein (E) function D(580T) + 4E(θT) with θ values 430°K (T = 100–230°K) and 465°K (T > 230°K), respectively. Further, the enthalpy change ΔH associated with the HT anomaly in doped V2O3 (80 ≤ ΔH ≤ 510 J/mole) was 5–10 times smaller than the ΔH corresponding to the lower-temperature transition. The results cited here appear incompatible with the Mott transition model that has been invoked to explain the HT anomaly.  相似文献   

5.
Solid state reactions at 925°C between the high-T c ceramic superconductor YBa2Cu3O7?δ and La2O3 and SrCO3, respectively, mixed in various molar ratiosr=MeOn/YBa2Cu3O7?δ, were studied using X-ray powder diffraction and scanning electron microscopy. The reaction between YBa2Cu3O7?δ and La2O3 yielded (La1?xBax)2CuO4?δ, withx≈0.075?0.10. La2?xBa1+xCu2O6?δ, withx≈0.2?0.25 and La-doped (Y1?xLax)2BaCuO5, withx≈0.10?0.15. Forr=3.0, Y-doped La2BaCuO5 resulted also. The reaction between YBa2Cu3O7?δ and SrCO3 yielded (Sr1?zBaz)2CuO3, withz≈0.1, Y2(Ba1?zSrz)CuO5, withz=0.1?0.15, and a nonsuperconducting compound with an approximate composition of Y(Ba0.5Sr0.5)5Cu3.5O10±δ. At values ofr≤2.0, unsubstituted YBa2Cu3O7?delta was found in the reaction products.  相似文献   

6.
The effect of ferric and manganese oxides dopants on thermal and physicochemical properties of Mn-oxide/Al2O3 and Fe2O3/Al2O3 systems has been studied separately. The pure and doped mixed solids were thermally treated at 400–1000°C. Pyrolysis of pure and doped mixed solids was investigated via thermal analysis (TG-DTG) techniques. The thermal products were characterized using XRD-analysis. The results revealed that pure ferric nitrate decomposes into Fe2O3 at 350°C and shows thermal stability up to1000°C. Crystalline Fe3O4 and Mn3O4phases were detected for some doped solids precalcined at 1000°C. Crystalline γ-Al2O3 phase was detected for all solids preheated up to 800°C. Ferric and manganese oxides enhanced the formation of α-Al2O3 phase at1000°C. Crystalline MnAl2O4 and MnFe2O4 phases were formed at 1000°C as a result of solid–solid interaction processes. The catalytic behavior of the thermal products was tested using the decomposition of H2O2 reaction. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
《Solid State Sciences》2001,3(1-2):49-56
For application of LnSiON (Ln=Y, Gd and La) oxynitride materials, e.g. as host-lattices for lamp phosphors, oxidation resistance up to about 600 °C in air is a prerequisite. In this study we prepared LnSiON (Ln=Y, Gd and La) powders by solid state reaction and observed via TGA/DTA-experiments that most compounds are oxidation resistant up to 600 °C in air. The stability in air at high temperatures increases going from Ln5(SiO4)3N, Ln4Si2O7N2, LnSiO2N, Ln2Si3O3N4 to Ln3Si8O4N11. This is explained by an increasing cross-linking between the siliconoxygennitrogen tetrahedra in this sequence. For the lattices with less cross-linking between the siliconoxygennitrogen tetrahedra we observed that the oxidation resistance decreases slightly going from Y and Gd to La. For these lattices, also, an additional weight gain was observed during the oxidation reaction, which was higher than expected for complete oxidation. The additional weight gain was ascribed to an intermediate phase in which nitrogen retention takes place.  相似文献   

8.
DTA was applied to investigate amorphous sulfur samples remelted at different temperaturesT f. For the sample remelted atT f<159 °C, an exothermic process I occurs in the range 30–40°C. Transformation of orthorhombic to monoclinic sulfur, melting and polymerization ofS 8 rings was observed at higher temperatures. For the sample remelted atT f > 159 °C, a new, fast exothermic process II occurs at ambient temperature, followed by an exothermic process III at slightly higher temperature. The next, also exothermic process IV is detected in the vicinity of the melting point. The heats of the thermal effects for all the above-mentioned processes, and the part of sulfur insoluble in CS2, were determined. An attempt was made to evaluate the mechanism of the transformations.  相似文献   

9.
The kinetics of carbon monoxide oxidation with atmospheric oxygen on a PdCl2-CuCl2/γ-Al2O3 catalyst was studied at T = 27°C and an N2-O2-CO mixture pressure of 1 atm. The catalyst was prepared by cold impregnation. Three groups of mechanistic hypotheses are considered, and two of them are demonstrated to be consistent with kinetic data, although they differ in the roles of water and oxygen in carbon monoxide oxidation.  相似文献   

10.
We have found a new compound Mn8O10Cl3. It is prepared by oxidation of anhydrous or hydrated MnCl2 in streaming (N2 + O2) at temperatures less than 680°C. At room temperature the compound is tetragonal, a = b = 9.2898 Å, c = 13.0247 Å. The more symmetric space group is I4mmm. Mn8O10Cl3 becomes cubic at 360°C with the c-axis as cubic parameter. In air, DTA and GTA have shown that Mn8O10Cl3 is transformed at 580°C into Mn2O3 which gives Mn3O4 at 960°C. The exact formula has been determined only by crystal structure analysis.  相似文献   

11.
Transport of α? Fe2O3 with HCl via monomeric iron(III) chloride according to Fe2O3(s) + 6 HCl(g) = 2FeCl3(g) + 3 H2O(g); T2 → T1 between T2 = 1000°C and T1 = 800°C in the region of diffusion produced crystals which contained, in dependence of total pressure, different amounts of divalent iron. By addition of oxygen to the transport gas stoichiometric crystals of hematite by otherwise unchanged conditions were obtained. The necessary amount of oxygen was calculated from the phase diagram Fe? O, and an explanation of the gas phase reactions is given. Dependence of the transport rate of hematite on total pressure in the region of diffusion (0.009 to 6 atm) is reported.  相似文献   

12.
The reactivity of solid silicon with a dydrogen has been studied in a temperature range between about 10°C and ≈540°C at discharge currents up to ≈420 mA and a pressure of ≈0.13 mbar (0.1 torr). At a given current the reaction rate displays a pronounced maximum at a temperature T1 ? 60°C and it approaches zero at T2 ? 300°C; both T1 and T2 d pending on the discharge current. Consequently, chemical transport of silicon is possible in temperature as well as plasma gradients.  相似文献   

13.

A series of hyperbranched poly(ether ether ketones) with different chain length between branching point (L) were prepared using a A2+B3 methodology, in which the A2 is hydroxyl‐terminated PEEK oligomer. The L affects the properties of the polymers such as the inherent viscosity, the degree of crystallinity, the thermal properties of the polymers etc. The polymer with a L2≈8 had T g (122.4°C), T c (200.2°C), and broad T m (247.4°C). With the increment of L, up to the point L2≈20 and L2≈35, the polymers become semi‐crystalline, with a melting point of 300.9°C and 317.9°C, respectively. Their wide angle X‐ray scattering (WAXS) pattern indicated that their crystal structure is exactly the same as that of the linear homopolymer.  相似文献   

14.
Manganese silicon nitride was prepared quantitatively as a precipitated phase by treating a Mn; Si-alloy (Mn: 1.84 w/o, Si: 1.12 w/o) in a mixture of 2% NH3 and H2 at 700°C. Nitriding was carried out in situ in a thermobalance and the nitrogen uptake was recorded as a function of time. The nitride phase was isolated and investigated by means of the combined TG-DTG-DTA technique both in an atmosphere of nitrogen at 25–1600°C and in a mixture of Ar+O2 (pO2 = 0.20 atm) at 25–1000°C. In the nitrogen atmosphere MnSiN2 appears to be stable up to 1000°C. Oxidising the nitride in the Ar/O2 mixture caused three distinct exothermic processes to occur at characteristic temperatures. The final oxidation products as identified by diffractometry and IR-spectroscopy are manganese oxide silicate (braunite) and silicon dioxide.  相似文献   

15.
The system MgOSiO2H2O was investigated at pressures between 40 and 95 kbar and at temperatures between 500 and 1400°C. The reaction products were examined by X-ray, optical and thermal analysis techniques and the density of phase A discovered by Ringwood and Major was also measured. It was found that phase A was hydrated and its chemical formula was H6Mg7Si2O14. When the MgSi ratio of the system is 2, phase A + clinoenstatite, and forsterite are stable at temperatures lower and higher than a boundary curve T (°C) = 10P (kbar), respectively. When the MgSi ratio of the system is 3, phase A + phase D (which is completely different from the phases, A, B and C discovered by Ringwood and Major, and any other known phases of magnesium silicate) and phase D + brucite are stable at temperatures lower and higher than a boundary curve T(°C) = 10P (kbar) + 200. Phase A has approximately an hexagonal symmetry and the space group and the lattice parameters are determined as P63 or P63m and a = 7.866(2) Å and c = 9.600(3) Å, respectively. The measured density is 2.96 ± 0.02 g/cm3. The optical observations show that phase A is biaxial positive crystal with refractive indices α = 1.638 ± 0.001, β = 1.640 ± 0.002, and γ = 1.649 ± 0.001. Some interpretation is given on the inconsistency between the symmetry determined by the X-ray diffraction and the optical observation. The new phase D belongs to the space group P21c with lattice parameters a = 7.914(2)Å, b = 4.752(1) Å, c = 10.350(2) Å and β = 108.71(5)° and is a biaxial crystal with refractive indices α = 1.630 ± 0.002, β = 1.642 ± 0.002 and γ = 1.658 ± 0.001.  相似文献   

16.
The effects of doping with CeO2 and calcination temperature on the physicochemical properties of the NiO/Al2O3 system have been investigated using DTA, XRD, nitrogen adsorption measurements at −196°C and decomposition of H2O2 at 30–50°C. The pure and variously doped solids were subjected to heat treatment at 300, 400, 700, 900 and 1000°C. The results revealed that the specific surface areas increased with increasing calcination temperature from 300 to 400°C and with doping of the system with CeO2. The pure and variously doped solids calcined at 300 and 400°C consisted of poorly crystalline NiO dispersed on γ-Al2O3. Heating at 700°C resulted in formation of well crystalline NiO and γ-Al2O3 phases beside CeO2 for the doped solids. Crystalline NiAl2O4 phase was formed starting from 900°C. The degree of crystallinity of NiAl2O4 increased with increasing the calcination temperature from 900 to 1000°C. An opposite effect was observed upon doping with CeO2. The NiO/Al2O3 system calcined at 300 and 400°C has catalytic activity higher than individual NiO obtained at the same calcination temperatures. The catalytic activity of NiO/Al2O3 system increased, progressively, with increasing the amount of CeO2 dopant and decreased with increasing the calcination temperature.  相似文献   

17.
The phase relations in the Yb2O3Ga2O3CoO system at 1300 and 1200°C, the Yb2O3Ga2O3NiO system at 1300 and 1200°C, the Yb2O3Ga2O3CuO system at 1000°C and the Yb2O3Ga2O3ZnO system at 1350 and 1200°C, the Yb2O3Cr2O3CoO system at 1300 and 1200°C, the Yb2O3Cr2O3NiO system at 1300 and 1200°C, the Yb2O3Cr2O3CuO system at 1000°C, and the Yb2O3Cr2O3ZnO system at 1300 and 1200°C were determined in air by means of a classical quenching method. YbGaCoO4 (a = 3.4165(1) and c = 25.081(2) Å), YbGaCuO4 (a = 3.4601(4) and c = 24.172(6) Å), and YbGaZnO4 (a = 3.4153(5) and c = 25.093(7) Å), which are isostructural with YbFe2O4 (space group: R3m, a = 3.455(1) and c = 25.109(2) Å, were obtained as stable phases. In the Yb2O3Ga2O3NiO system and the Yb2O3Cr2O3MO system (M: Co, Ni, Cu, and Zn), no ternary stable phases existed.  相似文献   

18.
Palladium catalysts are supported on TiO2, ZrO2, Al2O3, Zr0.5Al0.5O1.75 and TiO2-Zr0.5Al0.5O1.75 prepared by co-precipitation method, respectively. Catalytic activities for methane and CO oxidation are evaluated in a gas mixture that simulated the exhaust from lean-burn natural gas vehicles (NGVs). Pd/TiO2-Zr0.5Al0.5O1.75 performs the best catalytic activity among the tested five catalysts. For CH4, the light-off temperature (T50) is 254 °C, and the complete conversion temperature (T90) is 280 °C; for CO, T50 is 84 °C, and T90 was 96 °C. Various techniques, including N2 adsorption-desorption, X-ray diffraction (XRD), H2-temperature-programmed reduction (H2-TPR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) are employed to characterize the effect of supports on the physicochemical properties of prepared catalysts. N2 adsorption-desorption and SEM show that TiO2-Zr0.5Al0.5O1.75 expresses uniform nano-particles and large meso-pore diameters of 26 nm. H2-TPR and XRD indicate that PdO is well dispersed on the supports and strongly interacted with each other. The results of XPS show that the electron density around PdO and the proportion of active oxygen on TiO2-Zr0.5Al0.5O1.75 are maxima among the five supports.  相似文献   

19.
Commercial silicon powders are nitrided at constant temperatures (1453 K; 1513 K; 1633 K; 1693 K). The X-ray diffraction results show that small amounts of Si3N4 and Si2N2O are formed as the nitridation products in the samples. Fibroid and short columnar Si3N4 are detected in the samples. The formation mechanisms of Si3N4 and Si2N2O are analyzed. During the initial stage of silicon powder nitridation, Si on the outside of sample captures slight amount of O2 in N2 atmosphere, forming a thin film of SiO2 on the surface which seals the residual silicon inside. And the oxygen partial pressure between the SiO2 film and free silicon is decreasing gradually, so passive oxidation transforms to active oxidation and metastable SiO(g) is produced. When the SiO(g) partial pressure is high enough, the SiO2 film will crack, and N2 is infiltrated into the central section of the sample through cracks, generating Si2N2O and short columnar Si3N4 in situ. At the same time, metastable SiO(g) reacts with N2 and form fibroid Si3N4. In the regions where the oxygen partial pressure is high, Si3N4 is oxidized into Si2N2O.  相似文献   

20.
Ca5[Si2N6] and Ca7[NbSi2N9] were obtained by reaction of Ca3N2, Ca2N and Si3N4 (with addition of niobium powder in case of Ca7[NbSi2N9]) in closed tantalum ampoules at temperatures at 1060 °C and 1000 °C, respectively. Ca5[Si2N6] is monoclinic C2/c with a = 983.6(2) pm, b = 605.2(1) pm, c = 1275.7(3), β = 100.20(3)° and Z = 4 crystallising homotypically to Ba5[Si2N6]. The crystal structure contains pairs of edgesharing SiN4 tetrahedra forming isolated nitridosilicate anions of [Si2N6]10?. Ca7[NbSi2N9] is monoclinic P21/m with a = 605.1(1), b = 994.6(2), c = 899.7(2), β = 92.10(1)°, Z = 2 and crystallises in an hitherto unknown structure type. Ca7[NbSi2N9] contains isolated anions [NbSi2N9]14? which are composed of two edgesharing SiN4 tetrahedra and an edge‐sharing NbN5 pyramid. So far, such a pseudotrisilicate unit has not been observed in the family of silicates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号