首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A graph G is diameter-2-critical if its diameter is two and the deletion of any edge increases the diameter. In this paper we characterize the diameter-2-critical graphs with no antihole of length four, that is, the diameter-2-critical graphs whose complements have no induced 4-cycle. Murty and Simon conjectured that the number of edges in a diameter-2-critical graph of order n is at most n 2/4 and that the extremal graphs are complete bipartite graphs with equal size partite sets. As a consequence of our characterization, we prove the Murty-Simon Conjecture for graphs with no antihole of length four.  相似文献   

2.
The linear arboricity la(G) of a graph G is the minimum number of linear forests (graphs where every connected component is a path) that partition the edges of G. In 1984, Akiyama et al. [Math Slovaca 30 (1980), 405–417] stated the Linear Arboricity Conjecture (LAC) that the linear arboricity of any simple graph of maximum degree Δ is either ?Δ/2? or ?(Δ + 1)/2?. In [J. L. Wu, J Graph Theory 31 (1999), 129–134; J. L. Wu and Y. W. Wu, J Graph Theory 58(3) (2008), 210–220], it was proven that LAC holds for all planar graphs. LAC implies that for Δ odd, la(G) = ?Δ/2?. We conjecture that for planar graphs, this equality is true also for any even Δ?6. In this article we show that it is true for any even Δ?10, leaving open only the cases Δ = 6, 8. We present also an O(n logn) algorithm for partitioning a planar graph into max{la(G), 5} linear forests, which is optimal when Δ?9. © 2010 Wiley Periodicals, Inc. J Graph Theory  相似文献   

3.
For a graph G, let χ(G) denote its chromatic number and σ(G) denote the order of the largest clique subdivision in G. Let H(n) be the maximum of χ(G)=σ(G) over all n-vertex graphs G. A famous conjecture of Hajós from 1961 states that σ(G) ≥ χ(G) for every graph G. That is, H(n)≤1 for all positive integers n. This conjecture was disproved by Catlin in 1979. Erd?s and Fajtlowicz further showed by considering a random graph that H(n)≥cn 1/2/logn for some absolute constant c>0. In 1981 they conjectured that this bound is tight up to a constant factor in that there is some absolute constant C such that χ(G)=σ(G) ≤ Cn 1/2/logn for all n-vertex graphs G. In this paper we prove the Erd?s-Fajtlowicz conjecture. The main ingredient in our proof, which might be of independent interest, is an estimate on the order of the largest clique subdivision which one can find in every graph on n vertices with independence number α.  相似文献   

4.
Let G be a nonabelian group and associate a noncommuting graph ?(G) with G as follows: The vertex set of ?(G) is G\Z(G) with two vertices x and y joined by an edge whenever the commutator of x and y is not the identity. Abdollahi et al. (J Algebra 298(2):468–492, 2006) put forward a conjecture called AAM’s Conjecture in as follows: If M is a finite nonabelian simple group and G is a group such that ?(G) ? ?(M), then G ? M. Even though this conjecture is well known to hold for all simple groups with nonconnected prime graphs and the alternating group A 10 [see Darafsheh (Groups with the same non-commuting graph. Discrete Appl Math (2008) doi:10.1016/j.dam.2008.06.010), Wang and Shi (Commun Algebra 36(2):523–528, 2008)], it is still unknown for all simple groups with connected prime graphs except A 10. In the present paper, we prove that this conjecture is also true for the projective special linear simple group L 4(9). The new method used in this paper also works well in the cases L 4(4), L 4(7), U 4(7), etc.  相似文献   

5.
A graph G is diameter 2-critical if its diameter is two, and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter 2-critical graph of order n is at most n2/4 and that the extremal graphs are complete bipartite graphs with equal size partite sets. We use an association with total domination to prove the conjecture for the graphs whose complements have diameter three.  相似文献   

6.
A graph G is diameter 2-critical if its diameter is 2, and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter 2-critical graph of order n is at most n2/4 and that the extremal graphs are complete bipartite graphs with equal size partite sets. We use an important association with total domination to prove the conjecture for the graphs whose complements are claw-free.  相似文献   

7.
If a graph G has a drawing in the plane in such a way that every two crossings are independent, then we call G a plane graph with independent crossings or IC-planar graph for short. In this paper, the structure of IC-planar graphs with minimum degree at least two or three is studied. By applying their structural results, we prove that the edge chromatic number of G is Δ if Δ ≥ 8, the list edge (resp. list total) chromatic number of G is Δ (resp. Δ + 1) if Δ ≥ 14 and the linear arboricity of G is ?Δ/2? if Δ ≥ 17, where G is an IC-planar graph and Δ is the maximum degree of G.  相似文献   

8.
Let F: ? n → ? n be a polynomial local diffeomorphism and let S F denote the set of not proper points of F. The Jelonek’s real Jacobian Conjecture states that if codim(S F ) ≥ 2, then F is bijective. We prove a weak version of such conjecture establishing the sufficiency of a necessary condition for the bijectivity of F.  相似文献   

9.
A conjecture of V.G. Vizing states that if G is a Δ-critical graph of order ? and size m, thenm ≥ 1/2(n(Δ - 1) + 3). This conjecture has been verified for Δ ≤ 4 by I.T. Jakobsen, L.W. Beineke, S. Fiorini and H.P. Yap. In this paper, we prove the conjecture for Δ = 5.  相似文献   

10.
Madar conjectured that every k-critical n-connected non-complete graph G has (2k + 2) pairwise disjoint fragments. We show that Mader's conjecture holds if the order of G is greater than (k + 2)n. From this, it implies that two other conjectures on k-critical n-connected graphs posed by Entringer, Slater, and Mader also hold if the cardinality of the graphs is large. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
The article shrinks the Δ = 6 hole that exists in the family of planar graphs which satisfy the total coloring conjecture. Let G be a planar graph. If ${v_n^k}$ represents the number of vertices of degree n which lie on k distinct 3-cycles, for ${n, k \in \mathbb{N}}$ , then the conjecture is true for planar graphs which satisfy ${v_5^4 +2(v_5^{5^+} +v_6^4) +3v_6^5 +4v_6^{6^+} < 24}$ .  相似文献   

12.
For k?0, ?k(G) denotes the Lick-White vertex partition number of G. A graph G is called (n, k)-critical if it is connected and for each edge e of G?k(G–e)<?k(G)=n. We describe all (2, k)-critical graphs and for n?3,k?1 we extend and simplify a result of Bollobás and Harary giving one construction of a family of (n, k)-critical graphs of every possible order.  相似文献   

13.
Wei discovered that the independence number of a graph G is at least Σv(1 + d(v))?1. It is proved here that if G is a connected triangle-free graph on n ≥ 3 vertices and if G is neither an odd cycle nor an odd path, then the bound above can be increased by nΔ(Δ + 1), where Δ is the maximum degree. This new bound is sharp for even cycles and for three other graphs. These results relate nicely to some algorithms for finding large independent sets. They also have a natural matrix theory interpretation. A survey of other known lower bounds on the independence number is presented.  相似文献   

14.
The pebbling number of a graph G, f(G), is the least n such that, no matter how n pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of pebbling moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. Let p1,p2,…,pn be positive integers and G be such a graph, V(G)=n. The thorn graph of the graph G, with parameters p1,p2,…,pn, is obtained by attaching pi new vertices of degree 1 to the vertex ui of the graph G, i=1,2,…,n. Graham conjectured that for any connected graphs G and H, f(G×H)≤f(G)f(H). We show that Graham’s conjecture holds true for a thorn graph of the complete graph with every by a graph with the two-pebbling property. As a corollary, Graham’s conjecture holds when G and H are the thorn graphs of the complete graphs with every .  相似文献   

15.
It was conjectured that for each simple graph G=(V,E) with n=|V(G)| vertices and m=|E(G)| edges, it holds M2(G)/mM1(G)/n, where M1 and M2 are the first and second Zagreb indices. Hansen and Vuki?evi? proved that it is true for all chemical graphs and does not hold in general. Also the conjecture was proved for all trees, unicyclic graphs, and all bicyclic graphs except one class. In this paper, we show that for every positive integer k, there exists a connected graph such that mn=k and the conjecture does not hold. Moreover, by introducing some transformations, we show that M2/(m−1)>M1/n for all bicyclic graphs and it does not hold for general graphs. Using these transformations we give new and shorter proofs of some known results.  相似文献   

16.
A graph is diameter-2-critical if its diameter is 2 but the removal of any edge increases the diameter. A well-studied conjecture, known as the Murty–Simon conjecture, states that any diameter-2-critical graph of order n has at most ?n24? edges, with equality if and only if G is a balanced complete bipartite graph. Many partial results about this conjecture have been obtained, in particular it is known to hold for all sufficiently large graphs, for all triangle-free graphs, and for all graphs with a dominating edge. In this paper, we discuss ways in which this conjecture can be strengthened. Extending previous conjectures in this direction, we conjecture that, when we exclude the class of complete bipartite graphs and one particular graph, the maximum number of edges of a diameter-2-critical graph is at most ?(n?1)24?+1. The family of extremal examples is conjectured to consist of certain twin-expansions of the 5-cycle (with the exception of a set of thirteen special small graphs). Our main result is a step towards our conjecture: we show that the Murty–Simon bound is not tight for non-bipartite diameter-2-critical graphs that have a dominating edge, as they have at most ?n24??2 edges. Along the way, we give a shorter proof of the Murty–Simon conjecture for this class of graphs, and stronger bounds for more specific cases. We also characterize diameter-2-critical graphs of order n with maximum degree n?2: they form an interesting family of graphs with a dominating edge and 2n?4 edges.  相似文献   

17.
Let γ c (G) denote the minimum cardinality of a connected dominating set for G. A graph G is k-γ c -critical if γ c (G) = k, but γ c (Gxy) < k for ${xy \in E(\overline {G})}$ . Further, for integer r ≥ 2, G is said to be k-(γ c , r)-critical if γ c (G) = k, but γ c (Gxy) < k for each pair of non-adjacent vertices x and y that are at distance at most r apart. k-γ c -critical graphs are k-(γ c , r)-critical but the converse need not be true. In this paper, we give a characterization of 3-(γ c , 2)-critical claw-free graphs which are not 3-γ c -critical. In fact, we show that there are exactly four classes of such graphs.  相似文献   

18.
Rong Luo  Yue Zhao 《Discrete Mathematics》2006,306(15):1788-1790
In 1968, Vizing conjectured that, if G is a Δ-critical graph with n vertices, then α(G)?n/2, where α(G) is the independence number of G. In this note, we verify this conjecture for n?2Δ.  相似文献   

19.
In this paper, we study a conjecture of Andries E. Brouwer from 1996 regarding the minimum number of vertices of a strongly regular graph whose removal disconnects the graph into non-singleton components.We show that strongly regular graphs constructed from copolar spaces and from the more general spaces called Δ-spaces are counterexamples to Brouwer?s Conjecture. Using J.I. Hall?s characterization of finite reduced copolar spaces, we find that the triangular graphs T(m), the symplectic graphs Sp(2r,q) over the field Fq (for any q prime power), and the strongly regular graphs constructed from the hyperbolic quadrics O+(2r,2) and from the elliptic quadrics O(2r,2) over the field F2, respectively, are counterexamples to Brouwer?s Conjecture. For each of these graphs, we determine precisely the minimum number of vertices whose removal disconnects the graph into non-singleton components. While we are not aware of an analogue of Hall?s characterization theorem for Δ-spaces, we show that complements of the point graphs of certain finite generalized quadrangles are point graphs of Δ-spaces and thus, yield other counterexamples to Brouwer?s Conjecture.We prove that Brouwer?s Conjecture is true for many families of strongly regular graphs including the conference graphs, the generalized quadrangles GQ(q,q) graphs, the lattice graphs, the Latin square graphs, the strongly regular graphs with smallest eigenvalue −2 (except the triangular graphs) and the primitive strongly regular graphs with at most 30 vertices except for few cases.We leave as an open problem determining the best general lower bound for the minimum size of a disconnecting set of vertices of a strongly regular graph, whose removal disconnects the graph into non-singleton components.  相似文献   

20.
This paper defines the concept of sequential coloring. If G or its complement is one of four major types of perfect graphs, G is shown to be uniquely k-colorable it and only if it is sequentially k-colorable. It is conjectured that this equivalence is true for all perfect graphs. A potential role for sequential coloring in verifying the Strong Perfect Graph Conjecture is discussed. This conjecture is shown to be true for strongly sequentially colorable graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号