首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to evaluate the alterations of diluted molarity of contrast media to emit the maximum signal intensity by changing the parameters of pulse sequences. The phantom was developed by diluting the magnetic resonance imaging (MRI) T1 contrast medium. The phantom images were obtained by 1.5 and 3.0 T MRI systems. We conducted Pearson’s analysis to reveal the correlation of the signal-to-noise ratio (SNR)90%, the change of the concentration range of the contrast media which shows over 90% SNR, with changing the parameters of T1 effect pulse sequences in both 1.5 and 3.0 T imaging. As the flip angle increased, the SNR increased for all contrast media in magnetization-prepared rapid gradient echo and two-dimensional fast low angle shot pulse sequences at 1.5 and 3.0 T. Although the SNR increased until 30°, the SNR was almost the same over 30° in volumetric interpolated breath-hold examination at 1.5 and 3.0 T. The minimum contrast molarity of the representing SNR90% was decreased according to the increasing time to repeat in spin echo. The present study revealed that the high concentration technique of contrast media on three pulse sequences (VIBE, MPRAGE, and 2D FLASH) could be useful to obtain images with better SNR.  相似文献   

2.
To assess the feasibility of and characterize the new paramagnetic contrast agent gadolinium-BOPTA/dimeglumine (Gd-BOPTA) to detect acute myocardial infarctions with MR imaging, 24 patients (53.3 ± 8.3 yr) were examined 9.3 ± 3.6 days after a first myocardial infarction. Short-axis T1-weighted and T2-weighted MR imaging was performed at three slice levels. T1-weighted images were obtained before, immediately after, 15, 30, and 45 min after injection. Patients received either 0.05 or 0.1 mmol/kg body weight Gd-BOPTA. Images were qualitatively and quantitatively analyzed. Two patients showed no signs of infarction on T2-weighted images as opposed to contrast-enhanced T1-weighted images. Contrast-to-noise ratio was not affected by the dosage level. Signal intensity (SI) of normal to infarcted myocardium was significantly improved by both dosages (p < .0005) but a dosage of 0.05 mmol/kg produced significantly higher SI inf/norm (1.42 ± 0.07 vs. 1.34 ± 0.06, respectively, p = .015). SI of normal and infarcted myocardium enhanced immediately after administration of 0.05 mmol/kg (29.3 ± 5.1% and 53.8 ± 9.6% respectively), which decreased thereafter to 5.3 ± 4.8% and 40.2 ± 8.5% respectively, at 45 min (p < .002 for normal myocardium). SI enhancement immediately after 0.1 mmol/kg Gd-BOPTA showed no decrease within the first 45 min. Gd-BOPTA enables the detection of myocardial infarction. Optimal infarct delineation is achieved from 15 to 45 min after administration of 0.05 mmol/kg body weight Gd-BOPTA. Gd-BOPTA at 0.05 mmol/kg does improve image quality as measured by contrast-to-noise ratio and SI enhancement as compared to 0.10 mmol/kg.  相似文献   

3.
MR imaging contrast of brain metastases after cumulative doses of gadolinium chelate is quantitated and compared in order to assess the clinical utility of high dosage. T1-weighted spin-echo MR images of 39 patients with metastatic brain tumors were made before and after each of three equal doses cumulating to 0.1, 0.2 and 0.3 mmol Gd-complex per kg body weight. Quantitation of MRI contrast was limited to homogeneous brain metastases larger than 3 mm (n = 246). Post-Gd MRI contrast doubled with dose escalation from 0.1 to 0.3 mmol/kg and also increased with lesion size, by a factor of 2.5 between metastases of 3 and 16 mm diameter, that is after correcting for partial volume effect. At 0.2 and 0.3 mmol/kg the respective numbers of visible metastases increased by 15% and 43% compared with 0.1 mmol/kg (p < 0.0001, both). Image contrast figures differed significantly between doses (p = 0.018). Both the number of metastases and the image contrast is significantly higher when dose escalation is performed. It is indicated that the number of detected metastases will increase further at Gd doses beyond 0.3 mmol/kg. Post-Gd MRI contrast increases with lesion size, to an extent that can not be attributed to partial volume attenuation.  相似文献   

4.
The electrical spin injection from Fe into an n-doped GaAs channel through Schottky-tunnel-barrier is observed from 1.8 K to room temperature. The magnitude of local spin valve signal (ΔR/R0) decreases as the temperature increases. In each temperature, we calculated the injected polarization (η) considering the spin drift effect induced by the electric field. The interfacial polarizations of 19.3% and 12.6% are acquired for Fe/GaAs junction at T=1.8 and 300 K, respectively. The temperature dependence of spin injection efficiency is matched with interface resistance variation. As the temperature increases, Schottky-tunnel-barrier property is diminished so that the spin injection efficiency would be reduced.  相似文献   

5.
Currently, it is assumed that the pharmacokinetic properties of the first minutes of an I.V. MR contrast media bolus are similar to those of an i.v. iodinated contrast media bolus used in CT. Correct timing of an MRA examination is crucial for obtaining sufficient arterial contrast. This study sought to evaluate the temporal change of arterial signal intensity within 150 s after i.v. bolus injection of Gd-DTPA. Thirty consecutive patients (14 women/16 men; mean age: 51 +/- 11 years) were prospectively examined with a 1.0 Tesla clinical scanner. A single axial slice was acquired in 1.25 sec with manufacturer provided gradient echo sequence through the aorta at the level of the renal arteries. Investigation was started simultaneously to the application of contrast media (0.1 mmol/kg bodyweight Gd-DTPA at three different rates 2 mL/sec, 3 mL/sec and 4 mL/sec) and repeated for 2.5 min. An additional echo Doppler examination excluded patients with any cardiac disorders. Maximum signal (1300% increase compared to the basic value) in the aorta was achieved 20 +/- 6 sec after start of bolus injection. Then a plateau phase was maintained for the remaining investigation time (2.5 min). No significant difference was shown for different injection rates. After a bolus injection of Gd-DTPA the arterial contrast remains on a high level for at least 2 min. However, correct timing of the bolus arrival is still crucial to discriminate arteries and veins. An injection rate between 2 mL/sec and 4 mL/sec has no influence on early contrast media dynamics.  相似文献   

6.
《Magnetic resonance imaging》1998,16(9):1005-1012
The objective of this study was to investigate the role of contrast enhancement using a three-dimensional (3D) phase-contrast (PC) magnetic resonance (MR) sequence (3D PC-MRA) and to assess the value of a dynamic MR perfusion study of the kidneys to determine the hemodynamic relevance of unilateral renal artery stenosis (RAS). Seventeen patients with unilateral RAS were examined on a standard 1.0 T imaging system using a phase shift and magnitude sensitive 3D PC sequence (TR = 160 ms, TE = 9 ms, venc. 30 cm/s). Following the initial pre-contrast 3D PC-MRA a dynamic first pass perfusion study was performed using a Turbo-FLASH 2D sequence (TR = 4.5 ms, TE = 2.2 ms, TI = 400 ms) after bolus injection of 0.15 mmol gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA)/kg body weight. The 3D PC-MRA was then repeated during infusion of 0.15 mmol Gd-DTPA/kg body weight. Evaluation by three independent readers was based on maximum intensity projection images. Source images were rendered on request. Signal intensity (SI) over time curves of the renal cortex were obtained from the dynamic perfusion study and analyzed for maximum signal enhancement as well as temporal relationship to the aortic SI curve. Results from 3D PC-MRA revealed a sensitivity (pre-/post-contrast) of 100%/89%, specificity of 76%/63%, positive predictive value of 80%/69%, negative predictive value of 90%/78%, and accuracy of 85%/75% (p = 0.07). Interobserver agreement was κ = 0.61/κ = 0.47 (pre/post Gd-DTPA), respectively. Increased signal-to-noise was present in all segments of the renal arteries post contrast (p = 0.0003). This came along with image degradation due to aliasing and elevated SI of venous flow that partially obscured the renal arteries. Dynamic SI curves showed a significantly decreased maximum SI in RAS (p = 0.01–0.001). A temporal delay of cortical signal intensity enhancement could not be confirmed in this setting. Gd-enhanced 3D PC-MRA did not yield a superior diagnostic value in the diagnosis of RAS compared to pre-contrast measurements. Dynamic perfusion imaging of the kidneys, in combination with 3D PC-MRA, can contribute additional information in suspected unilateral RAS.  相似文献   

7.
The optimal volume of contrast medium must be injected into the patient who emits the maximum signal intensity in an ROI. This study was investigated four different type MRI and one CT contrast agent in vitro and sought to establish relations between concentration, MRI relaxivity, CT Hounsfield unites selected kVp and different MRI T1 sequences. Using a CT contrast medium and four different MRI T1 contrast media, we developed five different phantom series. The MRI contrast media phantom was imaged on 1.5T and 3T MRI systems and measured the R1 and R2 value. A CT scanner was used to obtain images of the Iopromide 370 phantom with the quality of radiation to obtain images. The Pearson's correlation coefficient analyses were conducted between MRI CM phantom series with Iopromide 370 phantom. The non-parametric statistical analyses were performed for the values of kVp. The ΔHU of the test solution of the CT contrast media was produced in the same amount as the exponentially increased concentration of the MRI contrast media according to the increase in the dilution concentration, and was influenced by the quality of the X-ray. Through the results of this experiment that considered the two aforementioned factors, an image with a high diagnosis value can be acquired from the information on the concentration of the MRI T1 contrast media.  相似文献   

8.
The neurotoxicity of intravenously injected Gadolinium (Gd) complexes to rats with disrupted blood-brain barrier (BBB) was evaluated. After disruption of the BBB by infusion of mannitol solution, one of several contrast agents tested was injected intravenously at a dose of 1 or 3 mmol Gd/kg, and neurological symptoms were graded. The concentrations of Gd in brain and plasma were also measured. Injection of Gd-DTPA at a dose of 3 mmol Gd/kg did not change behavior. On the other hand, Gd-DTPA-BMA, Gd-DO3A-butrol, and Gd-DO3A-HP each induced behavioral impairments, and some animals died within 1 h after injection. Gd-DO3A-HP showed lethal effect even at a dose of 1 mmol/kg. The concentration of Gd in the brain of the animals injected with Gd-DO3A-HP at 3 mmol Gd/kg was essentially the same as that of animals injected with Gd-DTPA at the same dose. The neurotoxicity of the contrast agents tested was graded as follows: Gd-DTPA ≤ Gd-DTPA-BMA = Gd-DO3A-butrol < Gd-DO3A-HP.  相似文献   

9.
A clear understanding of two-phase fluid flow properties in porous media is of importance to CO2 geological storage. The study visually measured the immiscible and miscible displacement of water by CO2 using MRI (magnetic resonance imaging), and investigated the factor influencing the displacement process in porous media which were filled with quartz glass beads. For immiscible displacement at slow flow rates, the MR signal intensity of images increased because of CO2 dissolution; before the dissolution phenomenon became inconspicuous at flow rate of 0.8 mL min 1. For miscible displacement, the MR signal intensity decreased gradually independent of flow rates, because supercritical CO2 and water became miscible in the beginning of CO2 injection. CO2 channeling or fingering phenomena were more obviously observed with lower permeable porous media. Capillary force decreases with increasing particle size, which would increase permeability and allow CO2 and water to invade into small pore spaces more easily. The study also showed CO2 flow patterns were dominated by dimensionless capillary number, changing from capillary finger to stable flow. The relative permeability curve was calculated using Brooks-Corey model, while the results showed the relative permeability of CO2 slightly decreases with the increase of capillary number.  相似文献   

10.
The toxicity of gadolinium (Gd) based MRI contrast agents, is based upon the amount of Gd that dissociates from its chelate and deposits in tissues. In this study, the toxicities of two contrast agents were tested using different injection strategies in two animal models. Following a bolus injection of 0.2 mmol/kg of Gd-DTPA in a pilot study with a single canine, Gd levels were as high as 2.05 +/- 0.17 ppm and 0.47 +/- 0.11 ppm 2 weeks post injection in the kidney and liver tissues, respectively. To evaluate the role that the injection strategy plays in toxicity, 0.8 mmol/kg of Gd-(HP-DO3A) was injected into rats, in a second study, via bolus and constant infusion techniques. Gd was only detected in the kidney in the bolus injected rats but in the lung as well in the constant infusion injected rats. Concentrations detected in the kidney for both strategies, were comparable within error: 1.37 +/- 0.46 ppm for the bolus and 1.24 +/- 0.39 ppm for the bolus/constant infusion strategy and 0.16 +/- 0.14 ppm in the lung for the constant infusion technique. The contrast infusion technique does not appear to present an increased risk of toxicity over the bolus technique except perhaps to a small degree in the lung.  相似文献   

11.
ObjectivesThe purposes of this study were (1) to detect the dynamic metabonomic changes induced by gadopentetate dimeglumine (Gd-DTPA) and (2) to investigate the potential metabolic disturbances associated with the pathogenesis of nephrogenic systemic fibrosis (NSF) at the early stage.MethodsA nuclear magnetic resonance (NMR)-based metabolomics approach was used to investigate the urinary and serum metabolic changes induced by a single tail vein injection of Gd-DTPA (dosed at 2 and 5 mmol/kg body weight) in rats. Urine and serum samples were collected on days 1, 2 and 7 after dosing.ResultsMetabolic responses of rats to Gd-DTPA administration were systematic involving changes in lipid metabolism, glucose metabolism, TCA cycle, amino acid metabolism and gut microbiota functions. Urinary and serum metabonomic recovery could be observed in both the 2 and 5 mmol/kg body weight group, but the metabolic effects of high-dosed (5 mmol/kg body weight) Gd-DTPA lasted longer. It is worth noting that hyperlipidemia was observed after Gd-DTPA injection, and nicotinate might play a role in the subsequent self-recovery of lipid metabolism. The disturbance of tyrosine, glutamate and gut microbiota metabolism might associate with the progression of NSF.ConclusionThese findings offered essential information about the metabolic changes induced by Gd-DTPA, and could be potentially important for investigating the pathogenesis of NSF at the early stage. Moreover, the recovery of rats administrated with Gd-DTPA may have implications in the treatment of early stage NSF.  相似文献   

12.
Hyperpolarized (hp) 83Kr (spin I = 9/2) is a promising gas-phase contrast agent that displays sensitivity to the surface chemistry, surface-to-volume ratio, and surface temperature of the surrounding environment. This proof-of-principle study demonstrates the feasibility of ex vivo hp 83Kr magnetic resonance imaging (MRI) of lungs using natural abundance krypton gas (11.5% 83Kr) and excised, but otherwise intact, rat lungs located within a custom designed ventilation chamber. Experiments comparing the 83Kr MR signal intensity from lungs to that arising from a balloon with no internal structure inflated to the same volume with krypton gas mixture suggest that most of the observed signal originated from the alveoli and not merely the conducting airways. The 83Kr longitudinal relaxation times in the rat lungs ranged from 0.7 to 3.7 s but were reproducible for a given lung. Although the source of these variations was not explored in this work, hp 83Kr T1 differences may ultimately lead to a novel form of MRI contrast in lungs. The currently obtained 1200-fold signal enhancement for hp 83Kr at 9.4 T field strength is found to be 180 times below the theoretical upper limit.  相似文献   

13.
在10℃~230℃温差下,对大气相干长度r0分别采用夏克-哈特曼的到达角起伏法、差分像运动法、波面法三种测量法和四象限探测器进行了测试和对比;对折射率结构常量Cn2及闪烁功率谱分别采用夏克-哈特曼和光电倍增管进行对比.实验结果表明:对于r0,在强湍流时四象限探测器比夏克-哈特曼的稳定性明显降低,且对夏克-哈特曼三种方法,差分像运动法可克服设备抖动等问题,但引入了方向上不一致的问题,波面法可有效避免该问题;对于Cn2,夏克-哈特曼比光电倍增管测量更稳定,拟合相关系数高达0.96;对于闪烁功率谱,由于噪音影响,在200℃时夏克-哈特曼比光电倍增管测得的最大频率高15 Hz;最后,通过对夏克-哈特曼子孔径的闪烁功率谱分析得出,若同一子孔径入射光强不在CCD响应的线性区间时无法准确测量闪烁功率谱,否则可通过不同子孔径可完成湍流均匀性的测量.这将为湍流池提供最优的测试方法及理论依据.  相似文献   

14.
Nanoparticle technology is being increasingly used in environmental sciences. We prepared single enzyme nanoparticle (SEN) by modifying the surface of carbonic anhydrase (CA) with a thin layer of organic/inorganic hybrid polymer. SEN-CA appears to be improving the stability of free enzyme. CA, as ubiquitously found enzyme, is involved in gaseous CO2 sequestration and is being looked as a promising candidate for combating global warming. We report here physical characterization of SEN-CA using transmission electron microscope (TEM), Fourier-transform infrared analysis (FTIR), X-ray diffraction analysis (XRD), and energy dispersive X-ray (EDX). Average size of SEN-CA particles appears to be in the range of 70–80 nm. We also report the effect of SEN formation on the kinetic parameters of free CA such as Michaelis–Menten constant (K m), maximum reaction velocity (V max), and storage stability of free CA and SEN-CA. The V max of SEN-CA (0.02857 mmol/min/mg) and free enzyme (0.02029 mmol/min/mg) is almost similar. K m has decreased from 6.143 mM for SEN-CA to 1.252 mM for free CA. The stabilization of CA by SEN formation results in improved the half-life period (up to 100 days). The formation of carbonate was substantiated by using gas chromatography (GC). The conversion of CO2 to carbonate was 61 mg of CaCO3/mg of CA and 20.8 mg of CaCO3/mg of CA using SEN-CA and free CA, respectively.  相似文献   

15.
The evaluation of a solitary pulmonary nodule (SPN) is one of the most frequently encountered challenges in thoracic radiology. In addition to a “state-of-the-art” evaluation of SPNs with CT and biopsy techniques, recently the assessment of the enhancement characteristics with iodinized contrast agents has shown its potential to improve the characterization of SPNs. We investigated whether dynamic contrast-enhanced MRI is suitable to assess the degree and kinetics of MR contrast enhancement and whether this technique could help in the noninvasive specification of SPNs. We studied prospectively 21 patients with SPNs. T1-weighted and proton density-weighted spoiled gradient-echo breath-hold images (2D-FLASH) were obtained before and after the administration of Gd-DTPA in a standard dosage of 0.1 mmol/kg body weight. The maximum enhancement and the initial velocity of contrast uptake were assessed and correlated with pathohistological findings. To quantify contrast enhancement, we used the relative signal intensity increase (Srel) and the recently introduced enhancement factor (EF) and contrast uptake equivalent (CE). Dynamic contrast-enhanced MRI proved to be well suited for the assessment of the contrast enhancement characteristics of SPNs. Significant differences were found in the degree and kinetics of contrast enhancement for specific types of nodules. Malignant neoplastic SPNs enhanced stronger and faster than benign neoplastic SPNs. The strongest and fastest enhancement, however, was found in a benign type of nodules where histology revealed inflammatory/fibrous lesions. These differences in contrast enhancement between the different pathohistological groups were more significant when EF and CE rather than Srel was used for the quantification of contrast enhancement. The results of this study indicate a potential role for dynamic contrast-enhanced MRI in the preoperative noninvasive evaluation of SPNs using EF and CE as contrast uptake assessment parameters.  相似文献   

16.
The pharmacodynamics of polylysine-(Gd-DTPA) (Schering, Berlin, Germany), a new blood pooling contrast agent for MRI, were studied in the rabbit and the rat. Polylysine-(Gd-DTPA) is a compound with high LD50. Due to its high molecular weight (50.000) and physico-chemical properties, it remains in the vascular system; during the first hour, the plasma level is three times higher than for Gd-DTPA. MRI was performed at 1.5 T using a SE sequence with TR/TE = 300/15 or 20 msec. Signal intensities of muscle, liver and kidney were measured before and after intravenous injection of the contrast agent (0.1 mmol/kg) during 8 hours in the rat (n = 3) and up to 2 wk in the rabbit (n = 3). A dose response study in three additional rabbits confirmed that the 0.1 mmol/kg dose was optimal. The pharmacodynamics results show that the effects of polylysine-(Gd-DTPA) are similar in both the rabbit and the rat. The liver signal is enhanced by about 60% immediately after injection in both species. This enhanced signal decays to half its maximal value in about one hour, which makes the contrast agent useful for clinical applications at a dose of 0.1 mmol/kg. In the kidney medulla and cortex the signals are enhanced by much larger factors (about 3 to 4); it takes at least one day for the kidney to clear the contrast agent in both species.  相似文献   

17.
PURPOSE: This study used an experimental arterial stenosis model in pigs to evaluate the utility of a new medium-weight MRI contrast agent, NMS60 (a synthetic oligomeric Gd complex containing three Gd(3+) atoms, molecular weight of 2158 Da) compared to Gd-DTPA for contrast-enhanced MRA. MATERIALS AND METHODS: We used six male white hybrid pigs. Under anesthesia, one femoral artery was exposed and an inflatable cuff placed around it. The cuff was tightened around the vessel until 80-90% stenosis was achieved using digital subtraction angiography as a guide. Animals were then immediately transferred to the MRI scanner and images acquired pre- and postcontrast injection (0.1 or 0.2 mmol Gd/kg Gd-DTPA or NMS60, as a rapid bolus) using high-resolution and dynamic MRA. RESULTS: The dynamic MRA scans acquired during contrast bolus injection clearly showed the stenosed femoral artery as a segment of close to zero enhancement during the arterial phase of the bolus transit, while on the high-resolution scans the stenosis was difficult to detect due to venous signal contamination. The signal-to-noise at peak enhancement on the dynamic scans was significantly greater with 0.1 mmol Gd/kg NMS60 compared to 0.1 mmol Gd/kg Gd-DTPA (14.6 vs. 9.9, P < .05) and not significantly greater than 0.2 mmol Gd/kg (14.6 vs. 12.8). DISCUSSION AND CONCLUSION: This new medium-weight contrast agent demonstrated significantly greater enhancement than Gd-DTPA and may be valuable to aid detection of vascular stenosis in humans.  相似文献   

18.
The clinical use of magnetic resonance imaging (MRI) and multiphase enhanced computed tomography (CT) with the contrast media (Gd-EOB-DTPA) for detecting hepatic malignant and focal nodules prior to operation was examined based on the receiver operating characteristic (ROC) curve. This study included 70 patients with malignant and focal liver nodules who underwent MRI and multiphase CT scans before operation. Both scans for each patient were conducted within 1 month. For MRI, the T 2-weighted image (single shot fast spin echo) and two-dimensional (2-D) and 3-D T 1-gradient magnetic signals were obtained for all patients before administering the contrast media. The 2-D and 3-D T 1-gradient magnetic signals were obtained in the same location after delivering the contrast media. For the CT scans, images of artery phase, portal phase, and delayed phase were obtained at a thickness of 5 mm or less after administering contrast similar to MRI. An ROC curve was used (paired-samples T test, P < 0.05) to evaluate the images. When the analysis was based on the ROC curve, MRI showed high values (P < 0.05) for area under curve (AUC), sensitivity, and specificity in terms of detection rates of small lesions (less than 2 cm and more than 2 cm) compared to multidetector computed tomography (MDCT) (for ≤2 cm, MRI: 0.928, 70, 93%, CT: 0.775, 30, 90%; for ≥2 cm, MRI: 0.744, 80%, 84%; CT: 0.692, 40%, 84%). Gd-EOB-DTPA contrast media-enhanced MRI scanner for detecting malignant and focal liver nodules before operation showed the higher detection rate of lesion and classification of lesion as either benign or malignant than multiphase enhanced MDCT when the ROC curve was used for analysis. Based on these results, we believe that analysis based on the ROC curve will provide guidelines for evaluating malignant and focal hepatic lesions prior to operation.  相似文献   

19.
In this work, a new simple and sensitive flow injection method is developed for the determination of homocysteine with spectrofluorimetric detection technique. This method is based on the oxidation of homocysteine with Tl (III) in acidic media, producing fluorescence reagent, TlCl32-ex = 237 nm, λem = 419 nm). The effects of chemical parameters (including pH of the solutions, the buffer, Tl (III) and potassium chloride concentrations), instrumental parameters (such as flow rate of the solutions, reaction coil length, and sample loop volume) and temperature on the fluorescence intensity as an analytical signal are studied and optimized. In the optimum conditions of the above variables, homocysteine can be determined in the range 4.0 × 10-7–40.0 × 10-6 M with the LDR from 4.0 × 10-7 to 25.0 × 10-6 M. The detection limit (with S/N = 3) is 6.0 × 10-8 M of homocysteine and precision for the injection of 5.0, 10.0 and 15.0 μM of homocysteine are 0.8%, 1.5% and 2.5% (n = 10) respectively. The rate of analysis is 90 samples per hour. The influence of potential interfering substances, including amino acids and carbohydrates is also studied. The proposed method has been successfully used for the determination of homocysteine in the real sample (blood serum and tap water) matrix.  相似文献   

20.
A LaF3: Er, Yb nanoparticle-doped organic–inorganic hybrid materials waveguide amplifier is demonstrated using reactive ion etching. A maximum gain of approximately 6.8 dB is observed in a 20-mm-long waveguide. Under excitation at 976 nm, the waveguides emit a strong green upconversion luminescence. The possible upconversion mechanisms are discussed. The dependence of upconversion emission intensity on excitation power confirms a three-photon process contributes to the upconversion of the emission band 405 nm and two-photon processes for the green and red emission bands. The temperature behavior by the measurement of the fluorescence intensity ratio of the signals at 520 nm and 544 nm as a function of the pump power demonstrates a fast thermalization between the 2 H 11/2 and 4 S 3/2 levels. The influence of upconversion emission on the gain performance of the waveguide amplifier is analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号