首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of a molecular complex between poly(ethylene oxide) (PEO) and p‐dihydroxybenzene (hydroquinone) has been determined using different experimental techniques such as differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and Fourier transform infrared spectroscopy (FTIR). From DSC investigations, an ethylene oxide/hydroquinone molar ratio of 2/1 was deduced. During the heating, the molecular complex undergoes a peritectic reaction and spontaneously transforms into a liquid phase and crystalline hydroquinone (incongruent melting). A triclinic unit cell (a = 1.17 nm, b = 1.20 nm, c = 1.06 nm, α = 78°, β = 64°, γ = 115°), containing eight ethylene oxide (EO) monomers and four hydroquinone molecules, has been determined from the analysis of the X‐ray diffraction fiber patterns of stretched and spherulitic films. The PEO chains adopt a helical conformation with four monomers per turn, which is very similar to the 72 helix of the pure polymer. A crystal structure is proposed on the basis of molecular packing considerations and X‐ray diffraction intensities. It consists of a layered structure with an alternation of PEO and small molecules layers, both layers being stabilized by an array of hydrogen bonds. The morphology of PEO–HYD crystals was studied by small angle X‐ray scattering and DSC. As previously shown for the PEO–resorcinol complex, PEO–HYD samples crystallize with a lamellar thickness corresponding to fully extended or integral folded chains. The relative proportion of lamellae with different thicknesses depends on the crystallization temperature and time. Finally, the observed morphologies are discussed in terms of intermolecular interactions and chain mobility. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1197–1208, 1999  相似文献   

2.
Ordered structure formed in gels of poly(ethylene oxide) (PEO) dispersed in various organic solvents has been investigated by means of infrared spectroscopy. In a cooled gel (below −35 °C) of PEO dispersed in a 1:1 mol/mol mixture of chloroform and carbon disulfide, a uniform (7/2) helical conformation is formed, in contrast to the distorted helix present in the monoclinic crystal modification. In a low-temperature range below −65 °C formation of a rigid polymer-solvent complex is suggested. The structure of the resultant gels as well as the gelation behavior are strongly dependent on solvent, reflecting the difference in the strength of polymer-solvent interactions.  相似文献   

3.
The effects of supercritical carbon dioxide (SC CO2) fluids on the morphology and/or conformation of poly(ethylene oxide) (PEO) in PEO/poly(methyl methacrylate) (PMMA) blends were investigated by means of differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and Fourier transform infrared (FTIR). According to DSC data for a given blend, the melting enthalpy and, therefore, degree of crystallinity of PEO were increased, whereas the melting temperature of PEO was decreased, with SC CO2 treatment. The enhancement of PEO crystallization with SC CO2 treatment, as demonstrated by DSC data, was supported by WAXD data. According to FTIR quantitative analyses, before SC CO2 treatments, the conformation of PEO was transformed from helix to trans planar zigzag via blending with PMMA. This helix‐to‐trans transformation of PEO increased proportionally with increasing PMMA content, with around 0.7% helix‐to‐trans transformation per 1% PMMA incorporation into the blend. For a given blend upon SC CO2 treatments, the conformation of PEO was transformed from trans to helix. This trans‐to‐helix transformation of PEO decreased with increasing PMMA contents in the blends because of the presence of interactions between the two polymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2479–2489, 2004  相似文献   

4.
A novel doublet chirality transfer (DCT) model was demonstrated in cis poly(3,5‐disubstituted phenylacetylene)s, i.e., S‐I , R‐I , and S‐I‐NMe . The chiral message from the stereocenter of alkylamide substituent at 3‐position induced the polyene backbone to take cis‐transoid helical conformation with a predominant screw sense. And in turn the helical backbone acted as a scaffold to orient the pyrene probes, which was linked to phenyl rings through 5‐position, to array in an asymmetric manner. A combinatory analyses of 1H NMR, Raman, FTIR, UV‐vis absorption, CD, and computer simulation suggested that the main‐chain stereostructure, solvent nature, and intramolecular hydrogen bonds played important and complex roles on DCT. High cis‐structure content and intramolecular hydrogen bonds were beneficial for the realization of DCT. Reversible helix‐helix transition was observed in S‐I by changing the nature of solvents. In DMF, S‐I adopted a relatively contracted helix, where the main chain exhibited strong optical activity, but that of pyrene was weak. In contrast, a relatively stretched helix formed in CHCl3, in which the optical activity of pyrene was much larger, whereas that of the polyene backbone was the weakest. This helix‐helix transition was attributed to the intramolecular hydrogen bonds, which was confirmed by solution‐state FTIR spectra and computer calculations.  相似文献   

5.
孙平川 《高分子科学》2012,30(6):900-915
Glass transition behavior of hydrogen bonded polymer blends of poly(vinyl phenol)(PVPh) and poly(ethylene oxide)(PEO) is systematically investigated using normal differential scanning calorimetry(DSC) and recently developed multifrequency temperature-modulated DSC(TOPEM),in combination with Fourier transform infrared spectroscopy(FTIR) and nuclear magnetic resonance(NMR) techniques,focusing on the effect of the PEO molecular weight on the spatial and dynamic heterogeneity.It is found,for the first time,that both the glass transition temperature(T_g) and activity energy(E_a) of the blends strongly depend on PEO molecular weight,and a common turning point,which separates the rapid and slow increasing regions,can be found.The interchain hydrogen bonding interactions,both determined by FTIR measurements and obtained from the Kwei equation,decrease with increasing PEO molecular weight,indicating a decrease of the componential miscibility.A series of parameters related to the microscopic spatial and dynamic heterogeneity,such as the activity energy, fragility,nonexponential factor and the size of cooperatively rearranging regions,are calculated from frequency dependency complex heat capacity measured using TOPEM.It is found that each of these parameters monotonically changes with increasing the PEO molecular weight during the glass transition process,demonstrating that hydrogen bonding interaction is the key factor in controlling the spatial and dynamic heterogeneity,thus the glass transition.NMR relaxation results reveal the existence of obvious phase separation large than 5 nm,implying that the cooperatively rearranging regions should be closely related to the interphase region between the two components.The above obtained origin and evolution of spatial and dynamic heterogeneity provide a new insight into the glass transition behavior of polymer blends.  相似文献   

6.
嵌段共聚物傅里叶变换拉曼光谱   总被引:3,自引:0,他引:3  
王靖  郭晨  刘会洲 《分析化学》2001,29(1):35-37
用傅里叶变换拉曼光谱(FT-Paman)研究了聚环氧乙烷-聚环氧丙烷-聚环氧乙烷(PEO-PPO-PEO)嵌段共聚物的无水样品,发现某些谱带对PEO0-PPO-PEO嵌段共聚物的结构和构象变化敏感,其中某些峰的相对强度的PPO/PEO比率和共聚物的构象有关,研究表明PluronicF68和F88具有一些反式构象的螺旋结构,PluronicP103(P123)是无规则结构,其它的嵌段共聚物处于二者之间.  相似文献   

7.
By means of differential scanning calorimetry, the phase diagram of the poly(ethylene oxide)–p-bromotoluene system (PEO–PBT) is established. It is found that PEO and PBT form a molecular intercalate with a molar stoichiometry of 22%, which corresponds to two PBT molecules for seven ethylene oxide units. The intercalate undergoes an incongruent melting at 48.5 °C on heating. Wide-angle X-ray diffraction experiments indicate that the PEO–PBT intercalate has a crystalline structure different from pure PEO. From variable-temperature Fourier transform IR spectroscopy investigations, it is believed that the macromolecular chains in the PEO–PBT intercalate adopt a 7/2 helical conformation which is identical to that in the pure PEO. There are a considerably large number of helical structures in the melt of the PEO–PBT intercalate at temperatures ranging from 50 to 60 °C even though the crystalline lattices collapsed in the aforementioned temperature range. Such a kind of melt is in a conformationally high order state. Received: 5 March 2001 Accepted: 31 August 2001  相似文献   

8.
Poly(hydroxyether of phenolphthalein) (PPH) was synthesized through the polycondensation of phenolphthalein with epichlorohydrin. It was characterized by Fourier transform infrared (FTIR) spectroscopy, NMR spectroscopy, and differential scanning calorimetry (DSC). The miscibility of the blends of PPH with poly(ethylene oxide) (PEO) was established on the basis of the thermal analysis results. DSC showed that the PPH/PEO blends prepared via casting from N,N‐dimethylformamide possessed single, composition‐dependent glass‐transition temperatures. Therefore, the blends were miscible in the amorphous state for all compositions. FTIR studies indicated that there were competitive hydrogen‐bonding interactions with the addition of PEO to the system, which were involved with OH…O?C〈, ? OH…? OH, and ? OH vs ether oxygen atoms of PEO hydrogen bonding, that is both intramolecular and intermolecular, between PPH and PEO). Some of the hydroxyl stretching vibration bands significantly shifted to higher frequencies, whereas others shifted to lower frequencies, and this suggested the formation of hydrogen bonds between the pendant hydroxyls of PPH and ether oxygen atoms of PEO, which were stronger than the intramolecular hydrogen bonding between hydroxyls and carbonyls of PPH. The FTIR spectra in the range of carbonyl stretching vibrations showed that the hydroxyl‐associated carbonyl groups were partially set free because of the presence of the competitive hydrogen‐bonding interactions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 466–475, 2003  相似文献   

9.
To investigate the structure and dynamics of water in mixed solutions including laponite clay particles and poly(ethylene oxide) (PEO), we measured the Raman spectra of the mixed solutions in the temperature range 283-313 K. The results show that the vibrational energies of the O-H stretching modes in the mixed solutions depend on the water content and temperature. The energy shifts of the O-H stretching modes are attributed to changes in the water structure. By applying a structural model of bulk water to the spectra in the O-H stretching region, the local structures of water in the solutions were analyzed. The result shows that the formation probability of hydrogen bonds in the solutions decreases as the water content decreases. Laponite and PEO have effects to disrupt the network structure of hydrogen bonds between water molecules. Further, it was found that laponite and PEO cause increase in the strength of hydrogen bonds of surrounding water,although the strength of the hydrogen bonds increases with the order water-laponite < water-water < water-PEO. It is concluded that water in laponite-PEO mixed solutions has a less-networked structure with strong hydrogen bonds compared with bulk water.  相似文献   

10.
Dynamic moduli of fumed silica suspensions in aqueous solutions of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers and PEO homopolymers were measured as a function of surface coverage. Since the block copolymers and PEO are adsorbed on the silica surface through hydrogen bonding between the ether oxygen and the silanol group on the silica surface, the interaction between the silanol groups, which is dominant for the aggregation of silica particles, should be prohibited. Dynamic moduli in the silica suspensions were strongly related to the stability of the silica suspensions and the block copolymer, and the longest PEO portion was useful for stabilizing the silica particles. However, the PEO homopolymer did not support stability of the silica particles, suggesting that chain conformation of the PEO portion in the block copolymer is different from that for the PEO homopolymer. Copyright 2001 Academic Press.  相似文献   

11.
通过溶液折光指数和粘度测定,研究了聚丙烯酸(PAA)与聚氧化乙烯(PEO)高分子链间在复合溶液中的相互作用和PAA/PEO高分子氢键复合溶液的结构与粘度,研究了复合溶液粘度随溶液pH值的变化规律及不同浓度时剪切速率对复合溶液粘度和复合增粘效果的影响。结果表明:PAA/PEO复合溶液结构不同于PAA和PEO两组分聚合物溶液结构,PAA与PEO高分子链间的氢键相互作用形成构象更为伸展、流体力学体积列大  相似文献   

12.
A series of poly(ethylene oxide) (PEO) blends with cellulose (CEL) or cellulose derivatives—carboxymethyl cellulose (CMC), cellulose acetate (CAC), and cellulose ether (CET)—has been investigated as phase change materials for thermal energy storage. For PEO/CEL blends solid–solid phase transition has been observed in the whole concentration's range; for PEO/CMC and PEO/CET blends solid–solid phase transition has been found for PEO content 25 or 50 and 25 wt%, respectively. Otherwise, solid–liquid phase transition takes place. MTDSC investigations revealed that for PEO/CEL and PEO/CMC blends transition the strongest recrystallization effect (as evidenced by exothermic effect in reversing heat flow) as melting process occurred. FTIR analysis shows a shift of the stretching vibration bands of both the proton‐donor O? H groups from CEL and PEO due to intermolecular hydrogen interactions between the blends' components. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the conformation and dynamics properties of polyethylene oxide (PEO) and polypropylene oxide (PPO) polymer chains at 298 K have been studied in the melt and at infinite dilution condition in water, methanol, chloroform, carbon tetrachloride, and n-heptane using molecular dynamics simulations. The calculated density of PEO melt with chain lengths of n = 2, 3, 4, 5 and, for PPO, n = 7 are in good agreement with the available experimental data. The conformational properties of PEO and PPO show an increasing gauche preference for the O-C-C-O dihedral in the following order water>methanol>chloroform>carbon tetrachloride = n-heptane. On the contrary, the preference for trans conformation has a maximum in carbon tetrachloride and n-heptane followed in the order by chloroform, methanol, and water. The PEO conformational preferences are in qualitative agreement with results of NMR studies. PEO chains formed different types of hydrogen bonds with polar solvent molecules. In particular, the occurrence of bifurcated hydrogen bonding in chloroform was also observed. Radii of gyration of PEO chains of length larger than n = 9 monomers showed a good agreement with light scattering data in water and in methanol. For the shorter chains the observed deviations are probably due to the enhanced hydrophobic effects caused by the terminal methyl groups. For PEO the fitting of end-to-end distance distributions with the semi-flexible chain model at 298 K provided persistence lengths of 0.375 and 0.387 nm in water and methanol, respectively. Finally, the radius of gyration of Pluronic P85 turned out to be 2.25 ± 0.4 nm at 293 K in water in agreement with experimental data.  相似文献   

14.
The formation of poly(ethylene oxide) (PEO) supramolecular complexes is discussed in terms of intermolecular interactions and molecular packing. On the basis of the different known crystal structures, several mechanisms are proposed. First, the PEO complexes can be formed by an Intercalation or Inclusion process, guest molecules diffusing into the PEO unit cell. On the other hand, molecular complexes based on hydrogen bonding cannot be obtained by such a way, their formation requires the complete removal of the initial PEO structure either by melting or dissolution. Finally the relations between the crystal lamellar morphology, the host-guest interactions and the PEO chain mobility are discussed.  相似文献   

15.
Miscibility and hydrogen bonding interaction have been investigated for the binary blends of poly(butylene adipate‐co‐44 mol % butylene terephthalate)[P(BA‐co‐BT)] with 4,4'‐thiodiphenol (TDP) and poly(ethylene‐ oxide)(PEO) with TDP; and the ternary blends of P(BA‐co‐BT)/PEO/TDP by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The DSC results indicated that the binary blends of P(BA‐co‐BT)/TDP and PEO/TDP were miscible because each blend showed only one composition‐dependent glass‐transition over the entire range of the blend composition. The formation of intermolecular hydrogen bonds between the hydroxyl groups of TDP and the carbonyl groups of P(BA‐co‐BT), and between the hydroxyl groups of TDP and the ether groups of PEO was confirmed by the FTIR spectra. According to the glass‐transition temperature measured by DSC, P(BA‐co‐BT) and PEO, their binary blends were immiscible over the entire range of blend composition, however, the miscibility between P(BA‐co‐BT) and PEO was enhanced through the TDP‐mediated intermolecular hydrogen bonding interaction. It was concluded that TDP content of about 5–10% may possibily enhance miscibility between P(BA‐co‐BT) and PEO via a hydrogen bonding interaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2971–2982, 2004  相似文献   

16.
杨曙光 《高分子科学》2017,35(8):1001-1008
Core-shell nanofibers were prepared by coaxial electrospinning technology,with poly(ethylene oxide) (PEO) as the core while poly(acrylic acid) (PAA) as the shell.PEO and PAA can form polymer complexes based on hydrogen bonding.In order to avoid forming strong hydrogen bonding complexes at nozzle and blocking spinning process,a polar aprotic solvent,N,N-dimethylformamide (DMF),was selected to dissolve PEO and PAA respectively.SEM,TEM and DSC were utilized to characterize the morphology and structure of PEO-PAA core-shell nanofibers.FTIR spectra demonstrated that hydrogen bonding was formed at the core-shell interface.In addition,the PAA shell of the nanofibers can be cross-linked by ethylene glycol (EG) under heat treatment,which increases the stability and extends the potential applications in aqueous environment.  相似文献   

17.
The structural characterization in crystals of three designed decapeptides containing a double d-segment at the C-terminus is described. The crystal structures of the peptides Boc-Leu-Aib-Val-Xxx-Leu-Aib-Val-(D)Ala-(D)Leu-Aib-OMe, (Xxx = Gly 2, (D)Ala 3, Aib 4) have been determined and compared with those reported earlier for peptide 1 (Xxx = Ala) and the all l analogue Boc-Leu-Aib-Val-Ala-Leu-Aib-Val-Ala-Leu-Aib-OMe, which yielded a perfect right-handed alpha-helical structure. Peptides 1 and 2 reveal a right-handed helical segment spanning residues 1 to 7, ending in a Schellman motif with (D)Ala(8) functioning as the terminating residue. Polypeptide chain reversal occurs at residue 9, a novel feature that appears to be the consequence of a C-H.O hydrogen bond between residue 4 C(alpha)H and residue 9 CO groups. The structures of peptides 3 and 4, which lack the pro R hydrogen at the C(alpha) atom of residue 4, are dramatically different. Peptide 3 adopts a right-handed helical conformation over the 1 to 7 segment. Residues 8 and 9 adopt alpha(L) conformations forming a C-terminus type I' beta-turn, corresponding to an incipient left-handed twist of the polypeptide chain. In peptide 4, helix termination occurs at Aib(6), with residues 6 to 9 forming a left-handed helix, resulting in a structure that accommodates direct fusion of two helical segments of opposite twist. Peptides 3 and 4 provide examples of chiral residues occurring in the less favored sense of helical twist; (D)Ala(4) in peptide 3 adopts an alpha(R) conformation, while (L)Val(7) in 4 adopts an alpha(L) conformation. The structural comparison of the decapeptides reported here provides evidence for the role of specific C-H.O hydrogen bonds in stabilizing chain reversals at helix termini, which may be relevant in aligning contiguous helical and strand segments in polypeptide structures.  相似文献   

18.
A new polymer with pendant hydroxyl groups, namely, poly(N-phenyl-2-hydroxytrime-thylene amine) (PHA), was synthesized by a direct condensation polymerization of aniline and epichlorohydrin in an alkaline medium. The new polymer is amorphous with a glass transition temperature (Tg) of 70°C. Blends of PHA with poly(ϵ-caprolactone) (PCL), as well as with two water-soluble polyethers, poly(ethylene oxide) (PEO) and poly(vinyl methyl ether) (PVME), were prepared by casting from a common solvent. It was found that all the three blends were miscible and showed a single, composition dependent glass transition temperature (Tg). FTIR studies revealed that PHA can form hydrogen bonds with PCL, PEO, and PVME, which are driving forces for the miscibility of the blends. © 1997 John Wiley & Sons, Inc.  相似文献   

19.
The electronic structure of pure poly(ethylene oxide) (PEO) for four different polymeric chain conformations has been studied by Hartree-Fock (HF) and density functional theory (DFT) through the analysis of their valence band photoelectron spectroscopy (VB-PES), X-ray emission spectroscopy (XES), and resonant inelastic X-ray scattering (RIXS). It is shown that the valence band of PEO presents specific conformation dependence, which can be used as a fingerprint of the polymeric structures. The calculated spectra have been compared with experimental results for PEO powder.  相似文献   

20.
Complex formation in the model three-component system, including polymer-polymer complex of poly(styrene-alt-maleic acid) (PSMA) and poly(ethylene oxide) (PEO), and also silica sol (SiO2) in aqueous solution as a function of molecular weight of PEO and the order of component mixing, were investigated. The degree of binding of PSMA links with PEO and SiO2 as well as the Gibbs energy of formation of the polymer-polymer complex and polymer-colloid complexes were defined. It was shown that the main factor of stabilization of the structure is hydrogen bonds. The conditions of three-component polymer-colloid system are practically independent of the order of component mixing. The spontaneous formation of polymer-colloid complexes between chemically complementary polymers and small dispersed particles is considered as the main reason for the abnormally high binding ability of colloid particles to the polymer-polymer complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号