首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
SrP2N4 was obtained by high-pressure high-temperature synthesis utilizing the multianvil technique (5 GPa, 1400 degrees C) starting from mixtures of phosphorus(V) nitride and strontium azide. SrP2N4 turned out to be isotypic with BaGa(2)O(4) and is closely related to KGeAlO(4). The crystal structure (SrP2N4, a=17.1029(8), c=8.10318(5) A, space group P6(3) (no. 173), V=2052.70(2) A3, Z=24, R(F2)=0.0633) was solved from synchrotron powder diffraction data by applying a combination of direct methods, Patterson syntheses, and difference Fourier maps adding the unit cell information derived from electron diffraction and symmetry information obtained from 31P solid-state NMR spectroscopy. The structure of SrP2N4 was refined by the Rietveld method by utilizing both neutron and synchrotron X-ray powder diffraction data, and has been corroborated additionally by 31P solid-state NMR spectroscopy by employing through-bond connectivities and distance relations.  相似文献   

2.
There has been considerable debate in the literature about the true room-temperature structure of ZrP2O7 and related materials. In this article we describe how a combination of information from solid-state 31P NMR and powder diffraction data can be used to determine the structure of this 136 unique-atom material. The structure has been solved using a combination of simulated annealing and Rietveld refinement performed simultaneously on X-ray and neutron diffraction data. Despite the close to cubic metric symmetry of the material, we show how its true orthorhombic structure (space group Pbca) can be refined to a high degree of precision.  相似文献   

3.
Two of the three conformational polymorphs of dimethyl-3,6-dichloro-2,5-dihydroxyterephthalate are studied by solid-state NMR techniques. The structural differences between the polymorphs have previously been studied by X-ray. In these two polymorphs named white and yellow due to their color, the major structural difference is the torsional angle between the ester group and the aromatic ring. The yellow form has a dihedral angle of 4 degrees between the plane of the aromatic ring and the plane of the ester group, while the white form has two different molecules per unit cell with dihedral angles of 70 degrees and 85 degrees. This change greatly affects the conjugation in the pi-electronic system. In addition, there are differences in the hydrogen-bonding patterns, with the white form having intermolecular hydrogen bonds and the yellow form having intramolecular hydrogen bonds. In this work, the carbon isotropic chemical shift values and the chlorine electric field gradient (EFG) tensor information are extracted from the (13)C MAS spectra, and the principal values of the chemical shift tensors of the carbons are obtained from 2D FIREMAT experiments. Quantum chemical calculations of the chemical shift tensor data as well as the EFG tensor are performed at the HF and DFT levels of theory on individual molecules and on stacks of three molecules to account for the important intermolecular interactions in the white form. The differences between the spectral data on the two polymorphs are discussed in terms of the known electronic and structural differences.  相似文献   

4.
Wang CM  Liao CH  Kao HM  Lii KH 《Inorganic chemistry》2005,44(18):6294-6298
A mixed-metal uranyl aquofluoride, [(UO2)2F8(H2O)2Zn2(4,4'-bpy)2].(4,4'-bpy), has been synthesized under hydrothermal conditions and has been structurally characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, emission spectroscopy, and solid-state NMR spectroscopy. It is one of the few uranium fluoride-organic framework solids in which an organic molecule is directly incorporated into the extended structure of the metal fluoride and is the first example of mixed-metal uranium oxyfluoride incorporating an organic ligand. The structure consists of neutral layers of edge- and corner-sharing uranium-centered pentagonal bipyramids and zinc-centered octahedra, which are linked through 4,4'-bpy ligands into a 3-D framework. The 1H MAS NMR spectrum is in support of the conclusion that the occluded 4,4'-bpy molecules in the structural channels are not protonated. Crystal data: monoclinic, space group P2(1)/c, a = 9.4630(5) A, b = 22.384(1) A, c = 16.7534(8) A, beta = 91.899(2) degrees , V = 3546.7(4) A(3) and Z = 4.  相似文献   

5.
Since zeolites are notoriously difficult to prepare as large single crystals, structure determination usually relies on powder X-ray diffraction (XRD). However, structure solution (i.e., deriving an initial structural model) directly from powder XRD data is often very difficult due to the diffraction phase problem and the high degree of overlap between the individual reflections, particularly for materials with the structural complexity of most zeolites. Here, we report a method for structure determination of zeolite crystal structures that combines powder XRD and nuclear magnetic resonance (NMR) spectroscopy in which the crucial step of structure solution is achieved using solid-state (29)Si double-quantum dipolar recoupling NMR, which probes the distance-dependent dipolar interactions between naturally abundant (29)Si nuclei in the zeolite framework. For two purely siliceous zeolite blind test samples, we demonstrate that the NMR data can be combined with the unit cell parameters and space group to solve structural models that refine successfully against the powder XRD data.  相似文献   

6.
Understanding the structure-property relationship for organic semiconductors is crucial in rational molecular design and organic thin film process control. Charge carrier transport in organic field-effect transistors predominantly occurs in a few semiconductor layers close to the interface in contact with the dielectric layer, and the transport properties depend sensitively on the precise molecular packing. Therefore, a better understanding of the impact of molecular packing and thin film morphology in the first few monolayers above the dielectric layer on charge transport is needed to improve the transistor performance. In this Article, we show that the detailed molecular packing in thin organic semiconductor films can be solved through a combination of grazing incidence X-ray diffraction (GIXD), near-edge X-ray absorption spectra fine structure (NEXAFS) spectroscopy, energy minimization packing calculations, and structure refinement of the diffraction data. We solve the thin film structure for 2 and 20 nm thick films of tetraceno[2,3-b]thiophene and detect only a single phase for these thicknesses. The GIXD yields accurate unit cell dimensions, while the precise molecular arrangement in the unit cell was found from the energy minimization and structure refinement; the NEXAFS yields a consistent molecular tilt. For the 20 nm film, the unit cell is triclinic with a = 5.96 A, b = 7.71 A, c = 15.16 A, alpha = 97.30 degrees, beta = 95.63 degrees, gamma = 90 degrees; there are two molecules per unit cell with herringbone packing (49-59 degree angle) and tilted about 7 degrees from the substrate normal. The thin film structure is significantly different from the bulk single-crystal structure, indicating the importance of characterizing thin film to correlate with thin film device performance. The results are compared to the corresponding data for the chemically similar and widely used pentacene. Possible effects of the observed thin film structure and morphology on charge carrier mobility are discussed.  相似文献   

7.
用Materials Studio软件对N-(1-萘基)-琥珀酰亚胺多晶粉末的X射线衍射数据进行衍射峰指标化、晶胞参数优化和空间群搜索等理论计算, 可以确定晶体结构所属的晶系和空间群, 并初步给出和多晶粉末衍射数据相近的晶胞参数; 在已确定空间群范围内, 以密度泛函理论计算得到的最低能量构象作为初始分子结构, 对N-(1-萘基)-琥珀酰亚胺多晶进行晶体结构理论预测, 给出一系列假定的晶胞参数, 从中可以找到和经上述计算给出的晶胞参数一致的晶体结构;对其进行晶胞参数优化后, 得到晶体结构具有和多晶粉末X射线衍射数据相近的衍射曲线, 并与已有的单晶数据相吻合.  相似文献   

8.
We report the crystal structure of a new polymorph of l-tyrosine (denoted the β polymorph), prepared by crystallization from the gas phase following vacuum sublimation. Structure determination was carried out by combined analysis of three-dimensional electron diffraction (3D-ED) data and powder X-ray diffraction (XRD) data. Specifically, 3D-ED data were required for reliable unit cell determination and space group assignment, with structure solution carried out independently from both 3D-ED data and powder XRD data, using the direct-space strategy for structure solution implemented using a genetic algorithm. Structure refinement was carried out both from powder XRD data, using the Rietveld profile refinement technique, and from 3D-ED data. The final refined structure was validated both by periodic DFT-D calculations, which confirm that the structure corresponds to an energy minimum on the energy landscape, and by the fact that the values of isotropic 13C NMR chemical shifts calculated for the crystal structure using DFT-D methodology are in good agreement with the experimental high-resolution solid-state 13C NMR spectrum. Based on DFT-D calculations using the PBE0-MBD method, the β polymorph is meta-stable with respect to the previously reported crystal structure of l-tyrosine (now denoted the α polymorph). Crystal structure prediction calculations using the AIRSS approach suggest that there are three other plausible crystalline polymorphs of l-tyrosine, with higher energy than the α and β polymorphs.

A new polymorph of l-tyrosine is reported, with the crystal structure determined by combined analysis of 3D-ED data and powder XRD data, augmented by information from periodic DFT-D calculations and solid-state 13C NMR data.  相似文献   

9.
The three-dimensional structure, conformation, and packing of molecules in the solid state are crucial components used in the optimization of many technologically useful materials properties. Single-crystal X-ray diffraction is the traditional and most effective method of determining 3-D structures in the solid state. Obtaining single crystals that are sufficiently large and free of imperfections is often laborious, time-consuming, and, occasionally, impossible. The feasibility of an integrated approach to the determination and verification of a complete three-dimensional structure for a medium-sized organic molecule without using single crystals is demonstrated for the case of an organic stabilizer compound N-(p-tolyl)-dodecylsulfonamide. The approach uses a combination of powder XRD data, several computational packages involving Monte Carlo simulations and ab initio quantum mechanical calculations, and experimental solid-state NMR chemical shifts. Structure elucidation of N-(p-tolyl)-dodecylsulfonamide revealed that the Bravais lattice is monoclinic, with cell dimensions of a = 38.773 A, b = 5.507 A, c = 9.509 A, and beta = 86.35 degrees, and a space group of P21/c.  相似文献   

10.
Relative stereochemistry is predicted for ambuic acid using a novel solid-state NMR approach. This NMR technique entails a comparison of measured shift tensor principal values with computed values for all diastereomers, allowing the selection of a best-fit structure. The proposed method extends previous solution NMR structural data by simultaneously modeling with high statistical probability hydrogen-bonding arrangements and molecular conformation at two positions. A dimeric structure is proposed for ambuic acid based on the initial poor fit of the carboxyl carbon tensors to a monomeric model. The dimer model, consisting of hydrogen bonding between pairs of neighboring carboxyl groups, reduces the root mean square error at the carboxy tensor by a factor of 2.7. Lattice details are thus also described by the proposed approach. The structural characterization method presented is of general applicability and may be especially useful for characterizing difficult to crystallize or hydrogen-poor materials.  相似文献   

11.
Poly(aminoimino)heptazine, otherwise known as Liebig's melon, whose composition and structure has been subject to multitudinous speculations, was synthesized from melamine at 630 degrees C under the pressure of ammonia. Electron diffraction, solid-state NMR spectroscopy, and theoretical calculations revealed that the nanocrystalline material exhibits domains well-ordered in two dimensions, thereby allowing the structure solution in projection by electron diffraction. Melon ([C(6)N(7)(NH(2))(NH)](n), plane group p2 gg, a=16.7, b=12.4 A, gamma=90 degrees, Z=4), is composed of layers made up from infinite 1D chains of NH-bridged melem (C(6)N(7)(NH(2))(3)) monomers. The strands adopt a zigzag-type geometry and are tightly linked by hydrogen bonds to give a 2D planar array. The inter-layer distance was determined to be 3.2 A from X-ray powder diffraction. The presence of heptazine building blocks, as well as NH and NH(2) groups was confirmed by (13)C and (15)N solid-state NMR spectroscopy using (15)N-labeled melon. The degree of condensation of the heptazine core was further substantiated by a (15)N direct excitation measurement. Magnetization exchange observed between all (15)N nuclei using a fp-RFDR experiment, together with the CP-MAS data and elemental analysis, suggests that the sample is mainly homogeneous in terms of its basic composition and molecular building blocks. Semiempirical, force field, and DFT/plane wave calculations under periodic boundary conditions corroborate the structure model obtained by electron diffraction. The overall planarity of the layers is confirmed and a good agreement is obtained between the experimental and calculated NMR chemical shift parameters. The polymeric character and thermal stability of melon might render this polymer a pre-stage of g-C(3)N(4) and portend its use as a promising inert material for a variety of applications in materials and surface science.  相似文献   

12.
Chen CS  Chiang RK  Kao HM  Lii KH 《Inorganic chemistry》2005,44(11):3914-3918
A new uranium(VI) silicate, Cs2(UO2)(Si2O6), has been synthesized by a high-temperature, high-pressure hydrothermal method and characterized by single-crystal X-ray diffraction and solid-state NMR spectroscopy. It crystallizes in the orthorhombic space group Ibca (No. 73) with a = 15.137(1) A, b = 15.295(1) A, c = 16.401(1) A, and Z = 16. Its structure consists of corrugated achter single chains of silicate tetrahedra extending along the c axis linked together via corner-sharing by UO6 tetragonal bipyramids to form a 3-D framework which delimits 8- and 6-ring channels. The Cs+ cations are located in the channels or at sites between channels. The 29Si and 133Cs MAS NMR spectra are consistent with the crystal structure as determined from X-ray diffraction, and the resonances in the spectra are assigned. Variable-temperature in situ powder X-ray diffraction study of the hydrate Cs2(UO2)(Si2O6) x 0.5H2O indicates that the framework structure is stable up to 800 degrees C and transforms to the structure of the title compound at 900 degrees C. A comparison of related uranyl silicate structures is made.  相似文献   

13.
We report the experimental determination of the (13)C(alpha) chemical shift tensors of Ala, Leu, Val, Phe, and Met in a number of polycrystalline peptides with known X-ray or de novo solid-state NMR structures. The 700 Hz dipolar coupling between (13)C(alpha) and its directly bonded (14)N permits extraction of both the magnitude and the orientation of the shielding tensor with respect to the C(alpha)-N bond vector. The chemical shift anisotropy (CSA) is recoupled under magic-angle spinning using the SUPER technique (Liu et al., J. Magn. Reson. 2002, 155, 15-28) to yield quasi-static chemical shift powder patterns. The tensor orientation is extracted from the (13)C-(14)N dipolar modulation of the powder line shapes. The magnitudes and orientations of the experimental (13)C(alpha) chemical shift tensors are found to be in good accord with those predicted from quantum chemical calculations. Using these principal values and orientations, supplemented with previously measured tensor orientations from (13)C-(15)N and (13)C-(1)H dipolar experiments, we are able to predict the (phi, psi, chi(1)) angles of Ala and Val within 5.8 degrees of the crystallographic values. This opens up a route to accurate determination of torsion angles in proteins based on shielding tensor magnitude and orientation information using labeled compounds, as well as the structure elucidation of noncrystalline organic compounds using natural abundance (13)C NMR techniques.  相似文献   

14.
A polar oxide ZnSnO3 was synthesized by a solid-state reaction under a pressure of 7 GPa and a temperature of 1000 degrees C. The crystal structure was determined by Rietveld analysis of the X-ray powder diffraction data. ZnSnO3 has a rhombohedral LiNbO3-type structure with unit cell parameters, a = 0.52622(1) nm, c = 1.40026(2) nm (space group: R3c). The polar structure is characterized by the large displacement of Zn along the c-axis in the ZnO6 octahedron based on the strong chemical bonding between Zn and three O. ZnSnO3 is a candidate piezoelectric and pyroelectric material as well as nonlinear optical material.  相似文献   

15.
Yan B  Maggard PA 《Inorganic chemistry》2006,45(12):4721-4727
The layered molybdate [M2(pzc)2(H2O)x][Mo5O16] (I: M = Ni, x = 5.0; II: M = Co, x = 4.0; pzc = pyrazinecarboxylate) hybrid solids were synthesized via hydrothermal reactions at 160-165 degrees C. The structures were determined by single-crystal X-ray diffraction data for I (Cc, Z = 4; a = 33.217(4) A, b = 5.6416(8) A, c = 13.982(2) A, beta = 99.407(8) degrees , and V = 2585.0(6) A3) and powder X-ray diffraction data for II (C2/c, Z = 4; a = 35.42(6) A, b = 5.697(9) A, c = 14.28(2) A, beta = 114.95(4) degrees , and V = 2614(12) A3). The polar structure of I contains new [Ni2(pzc)2(H2O)5]2+ double layers that form an asymmetric pattern of hydrogen bonds and covalent bonds to stair-stepped [Mo5O16]2- sheets, inducing a net dipole moment in the latter. In II, however, the [Co2(pzc)2(H2O)4]2+ double layers have one less coordinated water and subsequently exhibit a symmetric pattern of covalent and hydrogen bonding to the [Mo5O16]2- sheets, leading to a centrosymmetric structure. Thermogravimetric analyses and powder X-ray diffraction data reveal that I can be dehydrated and rehydrated with from 0 to 6.5 water molecules per formula unit, which is coupled with a corresponding contraction/expansion of the interlayer distances. Also, the dehydrated form of I can be intercalated by approximately 4.3 H2S molecules per formula unit, but the intercalation by pyridine or methanol is limited to less than one molecule per formula unit.  相似文献   

16.
We have developed methodology for the determination of solution structures of small molecules from residual dipolar coupling constants measured in dilute liquid crystals. The power of the new technique is demonstrated by the determination of the structure of methyl beta-d-xylopyranoside (I) in solution. An oriented sample of I was prepared using a mixture of C(12)E(5) and hexanol in D(2)O. Thirty residual dipolar coupling constants, ranging from -6.44 to 4.99 Hz, were measured using intensity-based J-modulated NMR techniques. These include 15 D(HH), 4 (1)D(CH), and 11 (n)D(CH) coupling constants. The accuracy of the dipolar coupling constants is estimated to be < +/- 0.02 Hz. New constant-time HMBC NMR experiments were developed for the measurement of (n)D(CH) coupling constants, the use of which was crucial for the successful structure determination of I, as they allowed us to increase the number of fitted parameters. The structure of I was refined using a model in which the directly bonded interatom distances were fixed at their ab initio values, while 16 geometrical and 5 order parameters were optimized. These included 2 CCC and 6 CCH angles, and 2 CCCC and 6 CCCH dihedral angles. Vibrationally averaged dipolar coupling constants were used during the refinement. The refined solution structure of I is very similar to that obtained by ab initio calculations, with 11 bond and dihedral angles differing by 0.8 degrees or less and the remaining 5 parameters differing by up to 3.3 degrees . Comparison with the neutron diffraction structure showed larger differences attributable to crystal packing effects. Reducing the degree of order by using dilute liquid crystalline media in combination with precise measurement of small residual dipolar coupling constants, as shown here, is a way of overcoming the limitation of strongly orienting liquid crystals associated with the complexity of (1)H NMR spectra for molecules with more than 12 protons.  相似文献   

17.
A new divalent cadmium phosphonate, Cd2Cl2(H2O)4(H2L), has been synthesized from the ethylenediamine-N,N'-bis(methylenephosphonic acid) (H4L). The obtained microcrystalline compound has been characterized by solid-state IR spectra and 13C, 31P, and 113Cd CP MAS NMR. The static 13P NMR spectra have been also recorded to give the delta11, delta22, and delta33 chemical shift parameters for both compounds. The spectral data, collected for Cd2Cl2(H2O)4(H2L), are in an agreement with its X-ray powder diffraction structure solved with the cell dimensions a = 16.6105(10), b = 7.1572(4), and c = 6.8171(4) A and beta = 98.327(4) degrees. The octahedral coordination sphere of the cadmium atoms consists of two phosphonate oxygen atoms, two water oxygen atoms, and the two chlorine atoms. Cadmium atoms are bridged by the chlorine atoms forming four-membered rings. The phosphorus atoms exhibit a tetrahedral coordination with two oxygen atoms bonded to the cadmium atoms with P-O distances of 1.503(10) and 1.504(10) A. The third oxygen atom, showing a longer P-O distance (1.546(9) A), is not bonded to the metal center, nor is it bonded to a proton. The combined IR and NMR proton-phosphorus cross-polarization kinetic data together with the X-ray data confirm that the cadmium phosphonate has the zwitterionic structure (NH2(+)CH2P(O2Cd2)O-) similar to the initial aminophosphonic acid H4L.  相似文献   

18.
The crystal structure of a new hybrid product comprised of two rigid building blocks, namely dirhodium(II) tetraacetate, [Rh(2)(O(2)CCH(3))(4)] (1), and 2,6-diselenaspiro[3.3]heptane, Se(2)C(5)H(8) (2), has been solved ab initio using laboratory source X-ray powder diffraction (XRPD) data. The rigid body refinement approach has been applied to assist in finding an adequate model and to reduce the number of the refined parameters. Complex [Rh(2)(O(2)CCH(3))(4).mu(2)-Se(2)C(5)H(8)-Se,Se'] (3) conforms to the triclinic unit cell with lattice parameters of a = 8.1357(4), b = 8.7736(4), and c = 15.2183(8) A, alpha = 77.417(3), beta = 88.837(3), and gamma = 69.276(4) degrees, V = 989.66(8) A(3), and Z = 2. The centrosymmetric P space group was selected for calculations. The final values of the reduced wR(p), R(p), and chi(2) were calculated at 0.0579, 0.0433, and 5.95, respectively. The structure of 3 is a one-dimensional zigzag polymer built on axial Rh...Se interactions at 2.632(6) A. The 2,6-diselenaspiro[3.3]heptane ligand acts as a bidentate linker bridging dirhodium units via both selenium atoms. The geometrical parameters of individual groups for rigid body refinement have been obtained from X-ray powder data for dirhodium(II) tetraacetate (1) and from single-crystal X-ray diffraction for diselenium molecule 2. The crystal structures of 1 and 2 are reported here for the first time. For 1 indexing based on XRPD data has resulted in the triclinic unit cell P with lattice parameters of a = 8.3392(7), b = 5.2216(5), and c = 7.5264(6) A, alpha = 95.547(10), beta = 78.101(6), and gamma = 104.714(13) degrees, V = 309.51(5) A(3), and Z = 1. The final values were wR(p) = 0.0452, R(p) = 0.0340, and chi(2) = 1.99. The 1D polymeric motif built on axial Rh.O interactions of the centrosymmetric dirhodium units has been confirmed for the solid-state structure of 1. Compound 2,6-diselenaspiro[3.3]heptane (2) conforms to the monoclinic space group P2(1)/c with the unit cell parameters of a = 5.9123(4), b = 19.6400(13), and c = 5.8877(4) A, beta = 108.5500(10) degrees, V = 648.15(8) A(3), and Z = 4.  相似文献   

19.
The structure of silver cyanide has been investigated by solid-state multinuclear magnetic resonance spectroscopy. Carbon-13 and nitrogen-15 NMR spectra of magic-angle-spinning (MAS) and stationary powder samples of isotopically enriched Ag(13)CN, Ag(13)C(15)N, and AgC(15)N have been acquired at the external applied magnetic field strengths 4.7, 7.05, and 9.4 T. Axially symmetric carbon and nitrogen chemical shift (CS) tensors provide evidence for linearity of the polymeric (-Ag-CN-)(n)() chains. A two-site model is required to successfully simulate the (13)C MAS NMR line shape, which is dominated by indirect nuclear spin-spin coupling between (109/107)Ag and (13)C nuclei. In combination with relativistic zeroth-order regular approximation density functional theory (ZORA-DFT) calculations on model AgCN fragments, the (13)C MAS NMR results show that 30 +/- 10% of the silver sites are disordered, that is, either -NC-Ag-CN- or -CN-Ag-NC-, and 70 +/- 10% of the silver sites are ordered, that is, -NC-Ag-NC-. Effective dipolar coupling data extracted from (13)C NMR spectra of stationary samples allow an upper limit of 1.194 A to be placed on the carbon-nitrogen internuclear distance. After incorporation of the effects of anisotropic indirect nuclear spin-spin coupling and motional averaging on the NMR-derived distance, a corrected value of r(CN) = 1.16 +/- 0.03 A is obtained. This work provides an example of the type of information which may be obtained from solid-state NMR studies of disordered materials and how such information may complement that available from diffraction studies.  相似文献   

20.
The local structure of the [SiO(4/2)F]- unit in fluoride-containing as-synthesized STF zeolite has been experimentally determined by a combination of solid-state NMR and microcrystal X-ray diffraction to be very close to trigonal bipyramidal. Because the fluoride ions are disordered over two sites, the resulting local structure of the [SiO(4/2)F]- unit from a conventional XRD refinement is an average between tetrahedral SiO(4/2) and five-coordinate [[SiO(4/2)F]-, giving an apparent F-Si distance longer than expected. The correct F-Si distance was determined by slow spinning MAS and fast spinning (19)F/(29)Si CP and REDOR solid-state NMR experiments and found to be between 1.72 and 1.79 A. In light of this, the X-ray structure was re-refined, including the disorder at Si3. The resulting local structure of the [SiO(4/2)F]- unit was very close to trigonal bipyramidal with a F-Si distance of 1.744 (6) A, in agreement with the NMR results and the prediction of Density Functional Theory calculations. In addition, further evidence for the existence of a covalent F-Si bond is provided by a (19)F-->(29)Si refocused INEPT experiment. The resonance for the five-coordinate species at -147.5 ppm in the (29)Si spectrum is a doublet due to the (19)F/(29)Si J-coupling of 165 Hz. The peaks in this doublet have remarkably different effective chemical shift anisotropies due to the interplay of the CSA, dipolar coupling, and J-coupling tensors. The distortions from tetrahedral geometry of the neighboring silicon atoms to the five-coordinate Si3 atom are manifested in increased delta(aniso) values. This information, along with F-Si distances measured by (19)F-->(29)Si CP experiments, makes it possible to assign half of the (29)Si resonances to unique tetrahedral sites. As well as determining the local geometry of the [SiO(4/2)F]- unit, the work presented here demonstrates the complementarity of the solid-state NMR and X-ray diffraction techniques and the advantages of using them together.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号