首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sm3+-doped zinc oxide nanophosphors were synthesized by solution combustion method. The size of the ZnO:Sm3+ nanostructures ranges from 40-60 nm. The photoluminescence spectra of ZnO:Sm3+ nanostructures is different from that of pure ZnO. The emission spectra of ZnO:Sm3+ nanostructures show a strong narrow emission peak at 425 nm and weak peaks at 457, 472 and 482 nm when excited with 255 nm.  相似文献   

2.
Zinc oxide (ZnO) nanowhiskers have been prepared using a multilayer ZnO(50 nm)/Zn(20 nm)/ZnO(2μm) structure on a polished stainless steel (SS) substrate by high rate magnetron sputtering. The formation of uniformly distributed ZnO nanowhiskers with about 20 nm dia. and 2 to 5 μm length was observed after a postdeposition annealing of the prepared structure at 300–400° C. An array of highlyc-axis oriented ZnO columns (70–300 nm in dia. and up to 10 μm long) were grown on Si substrates by pulsed laser deposition (PLD) at a high pressure (1 Torr), and Raman studies showed the activation of surface phonon modes. The nanosized powder (15–20 nm) and nanoparticle ZnO films on glass substrate were also prepared by a chemical route. Nanowhiskers showed enhanced UV light detection characteristics, and the chemically prepared ZnO nanoparticle films exhibited good sensing properties for alcohol  相似文献   

3.
Zinc oxide has become an important material for various applications. Commercially available zinc oxide single crystals and as-grown zinc oxide thin films have high surface roughness which has detrimental effects on the growth of subsequent layers and device performance. A chemical mechanical polishing (CMP) process was developed for the polishing of zinc oxide polycrystalline thin films. Highly smooth surfaces with RMS roughness <6 Å (as compared to the initial roughness of 26 ± 6 Å) were obtained under optimized conditions with removal rates as high as 670 Å/min. Effects of various CMP parameters on removal rate and surface roughness were evaluated. The role of pH on the polishing characteristics was investigated in detail.  相似文献   

4.
5.
We report the elaboration of vanadium-doped ZnO nanoparticles prepared by a sol–gel processing technique. In our approach, the water for hydrolysis was slowly released by esterification reaction followed by a supercritical drying in ethyl alcohol. Vanadium doping concentration of 10 at.% has been investigated. After treatment in air at different temperatures, the obtained nanopowder was characterised by various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). Analysis by scanning electron microscopy at high resolution shows that the grain size increases with increasing temperature. Thus, in the case of thermal treatment at 500 °C in air, the powder with an average particle size of 25 nm shows a strong luminescence band in the visible range. The intensity and energy position of the obtained PL band depends on the temperature measurement increase. The mechanism of this emission band is discussed.  相似文献   

6.
半导体照明发光二极管(LED)芯片制造技术及相关物理问题   总被引:7,自引:0,他引:7  
李刚 《物理》2005,34(11):827-833
以化合物半导体材料为发光元件的半导体固态照明正引发人类照明史上的又一次伟大革命.目前,局限半导体照明广泛应用的主要技术瓶颈有:出光效率(或外量子效率),单管最大可发光通量(或最大可工作功率),单位光通量的成本和发光二极管可正常使用寿命.文章综述和分析了与芯片发光效率(或外量子效率)和单芯最大可发光通量(或最大可工作功率) 相关的制造技术和相关物理问题.  相似文献   

7.
The nanocrystal thin films of zinc oxide doped by Al (ZnO:Al) were deposited by dc reactive magnetron sputtering on the glass substrates, in the pressure range of 33-51 Pa. From the X-ray diffraction patterns, the nanocrystalline structure of ZnO:Al films and the grain size were determined. The optical transmission spectra depend from the sputtering pressure, but their average value was 90% in the range from 33 Pa to 47 Pa. Also, the sputtering pressure changes the optical band gap of ZnO:Al films, which is highest for films deposited at 37 Pa, 40 Pa and 47 Pa. The obtained films at room temperature have a sheet resistance of 190 Ω/cm2 which increases with time, but the films annealed at temperature of 400 °C have constant resistance. The surface morphology of the films was studied by Scanning electron microscopy. XPS spectra showed that the peak of O1s of the as-deposited films is smaller than the peak of the annealed ZnO:Al films.  相似文献   

8.
This work presented a hybrid architecture of graphene oxide (GO)/ZnO nanorods (ZNs) with ZNs attached parallel onto GO sheets. ZNs were synthesized by refluxing zinc acetate dehydrate in methanol solution under basic conditions followed by surface modification of 3-aminopropyl triethoxysilane (ATS), and then the preformed ZNs were attached onto GO sheets by reaction of the amino groups on the outer wall of ZNs with the carboxyl groups on the GO surface. Transmission electron microscopy (TEM) image of the as-prepared hybrid reveals the morphology of the architecture of GO/ZNs hybrid. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) ultraviolet-visible (UV-vis) and fluorescence spectroscopy were also performed to characterize the structure and properties of the GO/ZNs hybrid. It was shown that ZNs maintained their initial morphology and crystallinity in the hybrid and the luminescence quenching of yellow-green emission of ZNs confirmed the electron transfer from excited ZnO to GO sheets.  相似文献   

9.
It was shown that annealing ZnO and ZnO:Ga initial powders and ceramics in different atmospheres significantly changes the characteristics of the studied samples. Two main luminescence bands of different origins were observed in powders at 540 nm and 580 nm. Annealing either in vacuum or in Ar:H2 atmosphere increased intensity of green luminescence with peak at 540 nm whereas annealing in air enhanced a luminescence band with peak at 580 nm in the powders. Corresponding changes in luminescence kinetic properties were observed. Annealing of the ceramics in vacuum and air did not affect the luminescence properties, while annealing them in Ar:H2 atmosphere increased green luminescence intensity of undoped ceramics and excitonic luminescence intensity of doped ones. Comparison of the X-ray, gamma-ray and cathode-ray excited luminescence lead to conclusion that the enhancement of luminescence intensity took place in surface layer of about 100 μm thickness.  相似文献   

10.
The twinned tabour-like ZnO microstructures have been successfully synthesized via a solvothermal method without the assistant of any additive and template. The as-prepared products are characterized by X-ray diffraction, field emission scanning electron microscope, and high-resolution transmission electron microscope. The ZnO microcrystals grow symmetrically, and are wurtzite structure. The tabour, with a diameter of about 8.5 μm, grows along the c axis. The time-dependent morphology evolution of the ZnO microcrystal presents every single ZnO tabour is composed by many single crystal units. A possible formation mechanism of these complex hierarchical structures is investigated by adjusting the reaction time. In addition, the twinned ZnO tabours exhibit excellent ethanol-sensing properties at 250 °C. The highest response is 6.4-20 ppm ethanol. The response of the sensor rapidly increases with the increasing concentration of ethanol, until the ethanol reaching 200 ppm. The response of the sensor to 200 ppm ethanol is about 24.64 with the response time of 3 s.  相似文献   

11.
Oxygen deficient zinc oxide (ZnO) thin films were deposited electrochemically on glass substrates which are pre-sputtered with pure zinc (Zn) metal. Well-arranged flower-like nanostructures are observed from the SEM micrographs. The purity and crystallinity of the deposited films were confirmed from X-ray diffraction studies supported by Raman studies. The broad and intense defect induced green emission confirms the high oxygen deficiency in the nanostructures. The flower-like structures as well as the oxygen defects present in the system are indeed very suitable for gas and chemical sensing applications. These films were used for room temperature sensing of three different chemicals viz. acetone, ethanol and ammonia. The sensor was found to be insensitive to the change in different concentrations of acetone while it was found to be sensitive to different concentrations of ethanol and ammonia. The sensor is most suitable for sensing ammonia at room temperature.  相似文献   

12.
In this article, we investigate the effects of oxygen partial pressure in the deposition chamber on the optical properties of zinc oxide (ZnO) thin films; in particular, we examine the variation of the refractive index with oxygen flux.ZnO thin films were deposited by radio-frequency (RF) magnetron sputtering and studied by means of X-ray diffraction (XRD) and spectroscopic ellipsometry (SE). We have found a preferential c-axis growth of ZnO films, with slightly variable deposition rates from 2.6 to 3.8 Å/s. Conversely, the refractive index exhibits, from ultraviolet (UV) to near infrared (IR), a considerable and almost linear variation when the oxygen flux value in the deposition chamber varies from 0 to 10 sccm.  相似文献   

13.
Zinc oxide nanostructures were prepared by microwave-irradiation technique in the presence of polyvinyl pyrrolidone as a shape modifier. The synthesized nanostructures were analyzed using scanning and transmission electron microscopy, selected-area electron diffraction, X-ray diffraction, and Fourier transform infrared spectroscopy (FT-IR). Characterization techniques revealed the formation of crystalline ZnO with a star-like shaped morphology, having the crystal structure of wurtzite. The microwave irradiated samples were further investigated to exploit their electrical and sensing properties. The good sensitivity and relatively short response and recovery times of chemoresistive sensors based on star-like ZnO thick films in the monitoring of low concentration of ammonia gas in air were related to the peculiar nanostructure of the sensing layer.  相似文献   

14.
This paper reports for the first time ultrasound, EGCG assisted synthesis of pure and Eu3+ (1–5 mol%) activated Ca2SiO4 nanophosphors having self-assembled superstructures with high purity. The shape, size and morphology of the product were tuned by controlling influential parameters. It was found that morphology was highly dependent on EGCG concentration, sonication time, pH and sonication power. The probable formation mechanism for various hierarchical superstructures was proposed. The PL studies of Ca2SiO4:Eu3+ phosphors can be effectively excited by the near ultraviolet (UV) (396 nm) light and exhibited strong red emission around 613 nm, which was attributed to the Eu3+ (5D0  7F2) transition. The concentration quenching phenomenon was explained based on energy transfer between defect and Eu3+ ions, electron–phonon coupling and Eu3+–Eu3+ interaction. The Judd–Ofelt intensity parameters and radiative properties were estimated by using PL emission spectra. The photometric studies indicate that the obtained phosphors could be a promising red component for possible applications in the field of white light emitting diodes.  相似文献   

15.
《Current Applied Physics》2014,14(4):621-629
Various zinc precursors, such as zinc acetate, zinc nitrate, zinc sulfate, and zinc chloride, have been used to control the formation of zinc oxide (ZnO) nanostructures onto aluminum substrate by chemical means. FESEM images of the ZnO nanostructures showed the formation of different morphologies, such as flakes, nanowalls, nanopetals, and nanodisks, when the nanostructures were synthesized using zinc acetate, zinc nitrate, zinc sulfate, and zinc chloride precursors, respectively. The TEM image of disk-like ZnO nanostructures formed using zinc chloride as a precursor revealed hexagonally shaped particles with an average diameter of 0.5 μm. Room-temperature photoluminescence (PL) spectra revealed a large quantity of surface oxygen defects in ZnO nanodisks grown from zinc chloride compared with those using other precursors. Furthermore, the ZnO nanostructures were evaluated for photocatalytic activity under ultraviolet (UV) light illumination. Nanostructures having a disk-like shape exhibited the highest photocatalytic performance (k = 0.027 min−1) for all the ZnO nanostructures studied. Improved photocatalytic activity of ZnO nanodisks was attributed to their large specific surface area (4.83 m2 g−1), surface oxygen defects, and super-hydrophilic nature of their surface, which is particularly suitable for dye adsorption.  相似文献   

16.
Nanostructured zinc oxide thin films were prepared by spray pyrolysis technique using Zn(NO3)2·6H2O as the precursor solution. The resulting films were investigated by X-ray diffraction and scanning electron microscopy to know crystal structure, size of crystallites and surface morphology. The films have been found to be polycrystalline zinc oxide, possessing hexagonal wurtzite crystal structure and nanocrystallite with grain size of approximately 30-35 nm. The LPG sensing performance of the films has been investigated at various concentrations of LPG in air at operating temperatures varying from 225 to 400 °C. At 325 °C the maximum responses of 46.3% and 48.9% have been observed, respectively, for concentrations of 0.8 and 1 vol% of LPG in air (1 vol% of LPG in air corresponds to 50% LEL of LPG in air). The recovery time has been found to be less than the response time for all concentrations of LPG. A possible reaction mechanism of LPG sensing has been proposed.  相似文献   

17.
Zinc oxide nanowires (ZnO NWs) were synthesized using a simple reactive-evaporation method without the use of catalysts. The NWs growth was precisely controlled by adjusting the experimental conditions mainly growth times and substrate temperatures. These experimental parameters are crucial for the growth of NWs. The typical diameter and length of the highly crystalline NWs obtained are several tens and several hundred nanometers, respectively. The nature of early-stages growth, morphology, structure and photoluminescent properties of the NWs grown at low temperatures have been explained and give the basic reasons behind these growth mechanisms. Self-organized ZnO nuclei are primarily formed on FTO pits due to high density of Zn atoms. It can be ascribed to vapour-solid with an area selected growth of NWs which provide a continuous pathway for carrier transport due to direct contact with the substrate. These features are crucial for the application of electronic devices, solar cells, etc.  相似文献   

18.
Novel covalently surface-modified zinc oxide (ZnO) nanoparticles (NP) (ZHIE) were successfully prepared, which have organic chains composed of hydrophilic amide and urethane linkages, and terminal amino groups on the surfaces, using zinc acetate monohydrate. FTIR spectroscopy, X-ray analysis and TEM observation suggested that the resultant ZHIE NPs have the mean sizes of about 10 nm in diameters, the organic chains linking the amino groups in the terminals and wurtzite crystal structure. UV-vis absorption spectrum of the ZHIE NPs in methanol showed maximum absorption band at 348 nm, supporting the TEM observations. Photoluminescent spectrum measurements depicted that the ZHIE NPs show broad visible emission band on the basis of trapped-electron emission. Cytotoxicity and phagocytosis assays suggested that the ZHIE NPs are noncytotoxic, and the ZHIE-labeled zymosan particles derived by conjugation of the ZHIE NPs with zymosan are internalized into the cells and generate fluorescence based on the ZHIE NPs.  相似文献   

19.
Instability dependent electrospinning process has been controlled to obtain tin oxide nanofibers with morphological variation. The effect of spinning parameters such as viscosity, conductivity, flow rate, distance and applied voltage on growth rate of different instabilities was simulated and different deposition conditions were defined from the simulation results. The structural morphology was analyzed using X-Ray Diffraction (XRD) and Scanning Electron microscope (SEM). The sensing behavior of different structures was investigated. The branched structure obtained due to axisymmetric instabilities exhibited best sensing performance owing to high surface to volume ratio.  相似文献   

20.
Herein, we have synthesized zinc sulfide nanospheres (ZnS NPs) encapsulated on reduced graphene oxide (RGO) hybrid by an ultrasonic bath (50 kHz/60 W). The physical and structural properties of ZnS NPs@RGO hybrid were analyzed by TEM, XRD, EIS and EDS. As-prepared ZnS NPs@RGO hybrid was applied towards the electrochemical determination of caffeic acid (CA) in various food samples. The ZnS NPs@RGO hybrid modified electrode (GCE) exhibited an excellent electrocatalytic performance towards caffeic acid detection and determination, when compared to other modified electrodes. Therefore, the electrochemical sensing performance of the fabricated and nanocomposite modified electrode was significantly improved owing to the synergistic effect of ZnS NPs and RGO catalyst. Furthermore, the hybrid materials provide highly active electro-sites as well as rapid electron transport pathways. The proposed electrochemical caffeic acid sensor produces a wide linear range of 0.015–671.7 µM with a nanomolar level detection limit (3.29 nM). In addition, the real sample analysis of the proposed sensor has applied to the determination of caffeic acid in various food samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号