首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our recent investigation on the formability of Al alloy tubes under combined internal pressure and axial load is expanded by examining the effect of the loading path traced. A set of Al-6260-T4 tubes were loaded along orthogonal stress paths to failure and the results are compared to those of the corresponding radial paths. It is confirmed that failure strains are path-dependent, but also is demonstrated that failure stresses become path-dependent if the prestrain is significant. The experiments are simulated using the previously developed finite element models and the calibration of the Yld2000-2D [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.-H., Chu, E., 2003. Plane stress yield function for aluminum alloy sheets-part I: theory. Int. J. Plasticity 19, 1297--1319] anisotropic yield function shown in [Korkolis, Y.P., Kyriakides, S., 2008b. Inflation and burst of anisotropic aluminum tubes. Part II: an advanced yield function including deformation-induced anisotropy. Int. J. Plasticity 24, 1625–1637] to yield accurate predictions of rupture for nine radial paths. The models are shown to reproduce the path dependence of the failure stresses and strains quite well. A group of additional radial and corner paths are subsequently examined numerically to enrich the existing data on path-dependence of failure. It is again shown that the amount of plastic prestraining in either of the two directions influences the difference of the failure stresses and strains between the radial and the corner stress paths.  相似文献   

2.
A temperature-dependent anisotropic material model was developed for two aluminum alloys AA5182-O and AA5754-O and their anisotropy parameters were established. A coupled thermo-mechanical finite element analysis of the forming process was then performed for the temperature range 25–260 °C (77–500 °F) at different strain rates. In the developed model, the anisotropy coefficients for Barlat’s YLD2000-2d anisotropic yield function [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.H., Chu, E., 2003. Plane stress yield function for aluminum alloy sheets – Part 1: Theory. Int. J. Plasticity 19, 1297–1319] in the plane-stress condition and the parameters for the isotropic strain hardening were established as a function of temperature. The temperature-dependent anisotropic yield function was then implemented into the commercial FEM code LS-DYNA as a user material subroutine (UMAT) using the cutting-plane algorithm for the integration of a general class of elastoplastic constitutive models [Abedrabbo, N., Pourboghrat, F., Carsley, J., 2006b. Forming of aluminum alloys at elevated temperatures – Part 2: Numerical modeling and experimental verification. Int. J. Plasticity 22 (2), 342–737]. The temperature-dependent material model was used to simulate the coupled thermo-mechanical finite element analysis of the stamping of an aluminum sheet using a hemispherical punch under the pure stretch boundary condition (no material draw-in was allowed). Simulation results were compared with experimental data at several elevated temperatures to evaluate the accuracy of the UMAT’s ability to predict both forming behavior and failure locations. Two failure criteria were used in the analysis; the M–K strain based forming limit diagrams (ε-FLD), and the stress based forming limit diagrams (σ-FLD). Both models were developed using Barlat’s YLD2000-2d anisotropic model for the two materials at several elevated temperatures. Also, as a design tool, the Genetic Algorithm optimization program HEEDS was linked with the developed thermo-mechanical models and used to numerically predict the “optimum” set of temperatures that would generate the maximum formability for the two materials in the pure stretch experiments. It was found that a higher temperature is not needed to form the part, but rather the punch should be maintained at the lowest temperature possible for maximum formability.  相似文献   

3.
4.
Four calibration methods have been evaluated for the linear transformation-based anisotropic yield function YLD2004-18p (Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., Dick, R.E., 2005. Linear transformation-based anisotropic yield functions. Int. J. Plasticity 21, 1009–1039) and the aluminium alloy AA5083-H116. The different parameter identifications are based on least squares fits to combinations of uniaxial tensile tests in seven directions with respect to the rolling direction, compression (upsetting) tests in the normal direction and stress states found using the full-constraint (FC) Taylor model for 690 evenly distributed strain paths. An elastic–plastic constitutive model based on YLD2004-18p has been implemented in a non-linear finite element code and used in finite element simulations of plane-strain tension tests, shear tests and upsetting tests. The experimental results as well as the Taylor model predictions can be satisfactorily reproduced by the considered yield function. However, the lacking ability of the Taylor model to quantitatively reproduce the experiments calls for more advanced crystal plasticity models.  相似文献   

5.
In the present paper the diffuse and localized necking models according to Swift [Swift, H.W., 1952. Plastic instability under plane stress, Journal of the Mechanics and Physics of Solids, 11–18], Hill [Hill, R., 1952. On discontinuous plastic states, with special reference to localized necking in thin sheets. Journal of the Mechanics and Physics of Solids 1, 19–30] and Marciniak and Kuczyński [Marciniak, Z., Kuczyński, K., 1967. Limit strains in the process of stretch-forming sheet metal. International Journal of Mechanical Sciences 9, 609–620], respectively, are considered. A theoretical framework for the mentioned models is proposed that covers rigid–plastic as well as elastic–plastic constitutive modelling using various advanced phenomenological yield functions that are able to account very accurately for plastic anisotropy. The mentioned necking models are applied to different orthotropic sheet metals in order to assess their predictive capabilities and to stress out some potential sources for discrepancies between simulations and experiments. In particular, the impact of the applied hardening curve and the equibiaxial r-value, which was recently introduced by Barlat [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Choi, S.-H., Pourboghrat, F., Chu, E., Lege, D.J., 2003. Plane stress yield function for aluminium alloy sheets – part 1: theory. International Journal of Plasticity 19, 297–1319], on formability prediction is investigated. Furthermore, the impact of the Portevin–LeChatelier effect on the formability of aluminum sheet metals is discussed.  相似文献   

6.
In this paper, yield functions describing the anisotropic behavior of textured metals are proposed. These yield functions are extensions to orthotropy of the isotropic yield function proposed by Cazacu et al. (Cazacu, O., Plunkett, B., Barlat, F., 2006. Orthotropic yield criterion for hexagonal close packed metals. Int. J. Plasticity 22, 1171–1194). Anisotropy is introduced using linear transformations of the stress deviator. It is shown that the proposed anisotropic yield functions represent with great accuracy both the tensile and compressive anisotropy in yield stresses and r-values of materials with hcp crystal structure and of metal sheets with cubic crystal structure. Furthermore, it is demonstrated that the proposed formulations can describe very accurately the anisotropic behavior of metal sheets whose tensile and compressive stresses are equal.  相似文献   

7.
In this work, the recently proposed anisotropic yield function, Yld2004-18p [Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., Dick, R.E., 2005. Linear transformation based anisotropic yield function, Int. J. Plasticity 21, 1009], is implemented in a finite element (FE) code for application to the cup drawing simulation of a circular blank sheet. A short review of the Yld2004-18p relevant features is provided and the stress integration scheme for its implementation in FE codes is described. The simulation of the drawing process is conducted for an aluminum alloy sheet sample (AA2090-T3). The predicted and experimental cup height profiles (earing profiles) with six ears are shown to be in excellent agreement. Additional simulations on a ficticious material are performed in order to show that the yield function Yld2004-18p can lead to the prediction of cups with eight ears. In order to achieve these results, a sufficient number of input data are required to calculate the yield function coefficients. Finally, a simplified analytical approach that relates the earing profile to the r-value directionality is also presented in this paper. It is shown that this approach can be very useful as a first approximation of the earing profile of drawn cups.  相似文献   

8.
Results from a series of multiaxial loading experiments on the Ti–6Al–4V titanium alloy are presented. Different loading conditions are applied in order to get the comprehensive response of the alloy. The strain rates are varied from the quasi-static to dynamic regimes and the corresponding material responses are obtained. The specimen is deformed to large strains in order to study the material behavior under finite deformation at various strain rates. Torsional Kolsky bar is used to achieve shear strain rates up to 1000 s−1. Experiments are performed under non-proportional loading conditions as well as dynamic torsion followed by dynamic compression at various temperatures. The non-proportional loading experiments comprise of an initial uniaxial loading to a certain level of strain followed by biaxial loading, using a channel-type die at various rates of loadings. All the non-proportional experiments are carried out at room temperature. Experiments are also performed to investigate the anisotropic behavior of the alloy. An orthotropic yield criterion [proposed by Cazacu, O., Plunkett, B., Barlat, F., 2005. Orthotropic yield criterion for hexagonal closed packed metals. International Journal of Plasticity 22, 1171–1194.] for anisotropic hexagonal closed packed materials with strength differential is used to generate the yield surface. Based on the definition of the effective stress of this yield criterion, the observed material response for the different loading conditions under large deformation is modeled using the Khan–Huang–Liang (KHL) equation assuming isotropic hardening. The model constants used in the present study, were pre-determined from the extensive uniaxial experiments presented in the earlier paper [Khan, A.S., Suh, Y.S., Kazmi R., 2004. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys. International Journal of Plasticity 20, 2233–2248]. The model predictions are found to be extremely close to the observed material response.  相似文献   

9.
A temperature-dependent anisotropic material model for use in a coupled thermo-mechanical finite element analysis of the forming of aluminum sheets was developed. The anisotropic properties of the aluminum alloy sheet AA3003-H111 were characterized for a range of temperatures 25–260 °C (77–500 °F) and for different strain rates. Material hardening parameters (flow rule) and plastic anisotropy parameters (R0, R45 and R90) were calculated using standard ASTM uniaxial tensile tests. From this experimental data, the anisotropy coefficients for the Barlat YLD96 yield function [Barlat, F., Maeda, Y., Chung, K., Yanagawa, M., Brem, J.C., Hayashida, Y., Lege, D.J., Matsui, K., Murtha, S.J., Hattori, S., Becker, R.C., Makosey, S., 1997a. Yield function development for aluminum alloy sheets. J. Mech. Phys. Solids 45 (11/12), 1727–1763] in the plane stress condition were calculated for several elevated temperatures. Curve fitting was used to calculate the anisotropy coefficients of Barlat’s YLD96 model and the hardening parameters as a function of temperature. An analytical study of the accuracy and usability of this curve fitting technique is presented through the calculation of plastic anisotropy R-parameters and yield function plots at different temperatures.  相似文献   

10.
The initial and subsequent yield surfaces for an anisotropic and pressure-dependent 2D stochastic cellular material, which represents solid foams, are investigated under biaxial loading using finite element analysis. Scalar measures of stress and strain, namely characteristic stress and characteristic strain, are used to describe the constitutive response of cellular material along various stress paths. The coupling between loading path and strain hardening is then investigated in characteristic stress–strain domain. The nature of the flow rule that best describes the plastic flow of cellular solid is also investigated. An incremental plasticity framework is proposed to describe the pressure-dependent plastic flow of 2D stochastic cellular solids. The proposed plasticity framework adopts the anisotropic and pressure-dependent yield function recently introduced by Alkhader and Vural [Alkhader M., Vural M., 2009a. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations. J. Mech. Phys. Solids 57(5), 871–890]. It has been shown that the proposed yield function can be simply calibrated using elastic constants and flow stresses under uniaixal loading. Comparison of stress fields predicted by continuum plasticity model to the ones obtained from FE analysis shows good agreement for the range of loading paths and strains investigated.  相似文献   

11.
Results are presented on the evolution of subsequent yield surfaces with finite deformation in a very high work hardening annealed 1100 aluminum alloy. In Part I [Khan, A.S., Kazmi, R., Stoughton, T., Pandey, A., 2009a. Evolution of subsequent yield surfaces and elastic constants with finite plastic deformation. Part 1: a very low work hardening aluminum alloy (Al-6061–T6511) 25, 1611–1625.] of this paper, similar results are presented for a very low work hardening aluminum alloy. Those results were very different from the present ones, and all the results were for proportional loading paths. The subsequent yield surfaces are determined in tension, free end torsion and combined tension–torsion proportional and non-proportional loading paths, using 10 με deviation from linearity definition of yield. Yield surfaces are also determined after linear, bi-linear, and non-linear unloading paths after finite deformation under tension, free end torsion, and combined tension–torsion loading. The initial yield surface is closer to the von-Mises surface and the subsequent yield surfaces show distortion, expansion, positive cross-effect, and “nose” in the loading direction. Additionally, the subsequent yield surfaces after non-proportional loading paths show shrinkage and compounded distortion. The yield surfaces after unloading depict strong anisotropy, positive cross-effect and exhibits different proportion of distortion in each loading conditions. The Young’s and shear modulus decrease with plastic deformation and this decrease is much less than those reported in the published literature.  相似文献   

12.
In this study, two multi-scale analyses codes are newly developed by combining a homogenization algorithm and an elastic/crystalline viscoplastic finite element (FE) method (Nakamachi, E., 1988. A finite element simulation of the sheet metal forming process. Int. J. Numer. Meth. Eng. 25, 283–292; Nakamachi, E., Dong, X., 1996. Elastic/crystalline viscoplastic finite element analysis of dynamic deformation of sheet metal. Int. J. Computer-Aided Eng. Software 13, 308–326; Nakamachi, E., Dong, X., 1997. Study of texture effect on sheet failure in a limit dome height test by using elastic/crystalline viscoplastic finite element analysis. J. Appl. Mech. Trans. ASME(E) 64, 519–524; Nakamachi, E., 1998. Elastic/crystalline viscoplastic finite element modeling based on hardening–softening evaluation equation. In: Proc. of the 6th NUMIFORM, pp. 315–321; Nakamachi, E., Hiraiwa, K., Morimoto, H., Harimoto, M., 2000a. Elastic/crystalline viscoplastic finite element analyses of single- and poly-crystal sheet deformations and their experimental verification. Int. J. Plasticity 16, 1419–1441; Nakamachi, E., Xie, C.L., Harimoto, M., 2000b. Drawability assessment of BCC steel sheet by using elastic/crystalline viscoplastic finite element analyses. Int. J. Mech. Sci. 43, 631–652); (1) a “semi-implicit” finite element (FE) code and (2) a “dynamic explicit” FE code. These were applied to predict the plastic strain induced yield loci and the formability of sheet metal in the macro scale, and simultaneously the crystal texture and hardening evolutions in the micro scale. The isotropic and kinematical hardening laws are employed in the crystalline plasticity constitutive equation. For the multi-scale structure, two-scales are considered. One is a microscopic polycrystal structure and the other a macroscopic elastic plastic continuum. We measure crystal morphologies by using the SEM-EBSD apparatus with a unit of about 3.8 μm voxel, and define a three dimensional (3D) representative volume element (RVE) for the micro polycrystal structure, which satisfy the periodicity condition of crystal orientation distribution. A “micro” finite element modeling technique is newly established to minimize the total number of finite elements in the micro scale. Next, the “semi-implicit” crystallographic homogenization FE code, which employs the SEM-EBSD measured RVE, is applied to the 99.9% pure-iron uni-axial tensile problem to predict the texture evolution and the subsequent yield loci in the various strain paths. These “semi implicit” results reveal that the plastic strain induced anisotropy in the micro and macro levels can be predicted by our FE analyses. The kinematical hardening law leads a distinct plastic strain induced anisotropy. Our “dynamic-explicit” FE code is applied to simulate the limit dome height (LDH) test problem of the mild steel DQSK, the high strength steel HSLA and the aluminum alloy AL6022 sheet metals, which were adopted as the NUMISHEET2005 Benchmark sheet metals (Smith, L.M., Pourboghrat, F., Yoon, J.-W., Stoughton, T.B., 2005. NUMISHEET2005. In: Proc. of 6th Int. Conf. Numerical Simulation of 3D Sheet Metal Forming Processes, PART A and B(Benchmark), pp. 409–451) to estimate formability. The “dynamic explicit” results reveal that the initial crystal orientation distribution has a large affects to a plastic strain induced texture and anisotropic hardening evolutions and sheet formability.  相似文献   

13.
A nonquadratic yield function (Yld96; Barlat, F., Maeda, Y., Chung, K., Yanagawa, M., Brem, J.C., Hayashida, Y., Lege, D.J. Matsui, K., Murtha, S.J., Hattori, S., Becker, R.C., Makosey, S., 1997. Yield function development for aluminium alloy sheet. J. Mech. Phys. Solids, 45, 1727) which simultaneously accounts for the anisotropy of uniaxial yield stresses and r values was newly implemented in a finite element code. Yield surface shapes, yield stress and r-value directionalities of Yld96 were investigated and compared with those of the previous yield function, Yld91 (Barlat, F., Lege, D.J., Brem, J.C. 1991a. A six-component yield function for anistropic metals. Int. J. Plasticity, 7, 693). Complete formulations for Yld96 implementation and the calculation of coefficients were also discussed for the convenient use of Yld96. A 2090-T3 aluminum alloy sheet sample was modeled and earing formation during a cup drawing test was simulated using the FEM code. The results of earing and thickness strain profiles were compared with the results obtained with Yld91. Investigations were further carried out with a translated yield surface to account for the strength differential effect observed in this material. Computation results with the translated yield surface were in very good agreement with experimental results. It was shown that the yield surface shape and translation have a significant influence on the prediction of the cup height profile during the drawing of a circular blank.  相似文献   

14.
In the present paper, a finite element formulation based on non-associated plasticity is developed. In the constitutive formulation, isotropic hardening is assumed and an evolution equation for the hardening parameter consistent with the principle of plastic work equivalence is introduced. The yield function and plastic potential function are considered as two different functions with functional form as the yield function of Hill [Hill, R., 1948. Theory of yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. A 193, 281–297] or Karafillis–Boyce associated model [Karafillis, A.P. Boyce, M., 1993. A general anisotropic yield criterion using bounds and a transformation weighting tensor. J. Mech. Phys. Solids 41, 1859–1886]. Algorithmic formulations of constitutive models that utilize associated or non-associated flow rule coupled with Hill or Karafillis–Boyce stress functions are derived by application of implicit return mapping procedure. Capabilities in predicting planar anisotropy of the Hill and Karafillis–Boyce stress functions are investigated considering material data of Al2008-T4 and Al2090-T3 sheet samples. The accuracy of the derived stress integration procedures is investigated by calculating iso-error maps.  相似文献   

15.
Subsequent yield surfaces for aluminum alloys are determined for three proportional loading paths (i.e., axial, hoop, and combined hoop and axial stress) using 10 με deviation from linearity as the definition of yield. This paper is in continuation with Parts I and II of the author’s previous papers on subsequent yield surfaces under tension–torsion (σ11–√3σ12) stress space using similar small offset definition of yield. In the current paper comprehensive experimental results on subsequent yield surfaces under tension–tension (σ11σ22) stress space are presented. Comparison of subsequent yield surfaces under (σ11–√3σ12) stress space, investigated in the earlier papers, clearly indicated distinctive hardening behavior under various loading paths. However, subsequent yield surfaces for Al 6061–T 6511 (a low work hardening alloy) showed contraction and negative cross-effect with finite deformation as compared to the annealed 1100 Al (a high work hardening alloy) where expansion and positive cross-effect was observed.  相似文献   

16.
17.
The temperature-dependent Barlat YLD96 anisotropic yield function developed previously [Forming of aluminum alloys at elevated temperatures – Part 1: Material characterization. Int. J. Plasticity, 2005a] was applied to the forming simulation of AA3003-H111 aluminum alloy sheets. The cutting-plane algorithm for the integration of a general class of elasto-plastic constitutive models was used to implement this yield function into the commercial FEM code LS-Dyna as a user material subroutine (UMAT). The temperature-dependent material model was used to simulate the coupled thermo-mechanical finite element analysis of the stamping of an aluminum sheet using a hemispherical punch under the pure stretch boundary condition. In order to evaluate the accuracy of the UMAT’s ability to predict both forming behavior and failure locations, simulation results were compared with experimental data performed at several elevated temperatures. Forming limit diagrams (FLDs) were developed for the AA3003-H111 at several elevated temperatures using the M-K model in order to predict the location of the failure in the numerical simulations. The favorable comparison found between the numerical and experimental data shows that a promising future exists for the development of more accurate temperature-dependent yield functions to apply to thermo-hydroforming process.  相似文献   

18.
A phenomenological yield function is proposed to represent the plastic anisotropy of aluminum sheets. It is an extension of the functions given by Barlat et al. [Int. J. Plasticity 7 (1991) 693] and Karafillis and Boyce [J. Mech. Phys. Solids 41 (1993) 1859]. The anisotropy is represented by 12 parameters in the form of two fourth order symmetric tensors. Four other parameters influence the shape of the yield surface uniformly. The role of each parameter is described in detail. The convexity of the yield surface is proved. The implementation of the proposed yield function is done in the 3D general case in an object-oriented finite element code. It is used to represent the anisotropy of a 2024 aluminum thin sheet and the adjustment is excellent. Other anisotropic materials from the literature are also well described by the proposed yield function.  相似文献   

19.
In this paper an anisotropic material model based on non-associated flow rule and mixed isotropic–kinematic hardening was developed and implemented into a user-defined material (UMAT) subroutine for the commercial finite element code ABAQUS. Both yield function and plastic potential were defined in the form of Hill’s [Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A 193, 281–297] quadratic anisotropic function, where the coefficients for the yield function were determined from the yield stresses in different material orientations, and those of the plastic potential were determined from the r-values in different directions. Isotropic hardening follows a nonlinear behavior, generally in the power law form for most grades of steel and the exponential law form for aluminum alloys. Also, a kinematic hardening law was implemented to account for cyclic loading effects. The evolution of the backstress tensor was modeled based on the nonlinear kinematic hardening theory (Armstrong–Frederick formulation). Computational plasticity equations were then formulated by using a return-mapping algorithm to integrate the stress over each time increment. Either explicit or implicit time integration schemes can be used for this model. Finally, the implemented material model was utilized to simulate two sheet metal forming processes: the cup drawing of AA2090-T3, and the springback of the channel drawing of two sheet materials (DP600 and AA6022-T43). Experimental cyclic shear tests were carried out in order to determine the cyclic stress–strain behavior and the Bauschinger ratio. The in-plane anisotropy (r-value and yield stress directionalities) of these sheet materials was also compared with the results of numerical simulations using the non-associated model. These results showed that this non-associated, mixed hardening model significantly improves the prediction of earing in the cup drawing process and the prediction of springback in the sidewall of drawn channel sections, even when a simple quadratic constitutive model is used.  相似文献   

20.
A recent study by Hassan et al. [Hassan, T., Taleb, L., Krishna, S., 2008. Influences of nonproportional loading paths on ratcheting responses and simulations by two recent cyclic plasticity models. Int. J. Plasticity, 24, 1863–1889.] demonstrated that some of the nonproportional ratcheting responses under stress-controlled loading histories cannot be simulated reasonably by two recent cyclic plasticity models. Two major drawbacks of the models identified were: (i) the stainless steel 304 demonstrated cyclic hardening under strain-controlled loading whereas cyclic softening under stress-controlled loading, which depends on the strain-range and which the existing models cannot describe; (ii) the change in biaxial ratcheting responses due to the change in the degree of nonproportionality were not simulated well by the models. Motivated by these findings, two modified cyclic plasticity models are evaluated in predicting a broad set of cyclic and ratcheting response of stainless steel 304. The experimental responses used in evaluating the modified models included both proportional (uniaxial) and nonproportional (biaxial) loading responses from Hassan and Kyriakides [Hassan, T., Kyriakides, S., 1994a. Ratcheting of cyclically hardening and softening materials. Part I: uniaxial behavior. Int. J. Plasticity, 10, 149–184; Hassan, T., Kyriakides, S., 1994b. Ratcheting of cyclically hardening and softening materials. Part II: multiaxial behavior. Int. J. Plasticity, 10, 185–212.] and Hassan et al. [Hassan, T., Taleb, L., Krishna, S., 2008. Influences of nonproportional loading paths on ratcheting responses and simulations by two recent cyclic plasticity models. Int. J. Plasticity, 24, 1863–1889.] The first model studied is a macro-scale, phenomenological, constitutive model originally proposed by Chaboche et al. [Chaboche, J.L., Dang-Van, K., Cordier, G., 1979. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. In: Proceedings of the Fifth International Conference on SMiRT, Div. L, Berlin, Germany, L11/3.]. This model was systematically modified for incorporating strain-range dependent cyclic hardening–softening, and proportional and nonproportional loading memory parameters. The second model evaluated is a polycrystalline model originally proposed by Cailletaud [Cailletaud, G., 1992. A micromechanical approach to inelastic behavior of metals. Int. J. Plasticity, 8, 55–73.] based on crystalline slip mechanisms. These two models are scrutinized against simulating hysteresis loop shape, cyclic hardening–softening, cross-effect, cyclic relaxation, subsequent cyclic softening and finally a broad set of ratcheting responses under uniaxial and biaxial loading histories. The modeling features which improved simulations for these responses are elaborated in the paper. In addition, a novel technique for simulating both the monotonic and cyclic responses with one set of model parameters is developed and validated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号