首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Key issues in cyclic plasticity modeling are discussed based upon representative experimental observations on several commonly used engineering materials. Cyclic plasticity is characterized by the Bauschinger effect, cyclic hardening/softening, strain range effect, nonproporitonal hardening, and strain ratcheting. Additional hardening is identified to associate with ratcheting rate decay. Proper modeling requires a clear distinction among different types of cyclic plasticity behavior. Cyclic hardening/softening sustains dependent on the loading amplitude and loading history. Strain range effect is common for most engineering metallic materials. Often, nonproportional hardening is accompanied by cyclic hardening, as being observed on stainless steels and pure copper. A clarification of the two types of material behavior can be made through benchmark experiments and modeling technique. Ratcheting rate decay is a common observation on a number of materials and it often follows a power law relationship with the number of loading cycles under the constant amplitude stress controlled condition. Benchmark experiments can be used to explore the different cyclic plasticity properties of the materials. Discussions about proper modeling are based on the typical cyclic plasticity phenomena obtained from testing several engineering materials under various uniaxial and multiaxial cyclic loading conditions. Sufficient experimental evidence points to the unambiguous conclusion that none of the hardening phenomena (cyclic hardening/softening, strain range effect, nonproportional hardening, and strain hardening associated with ratcheting rate decay) is isotropic in nature. None of the hardening behavior can be properly modeled with a change in the yield stress.  相似文献   

2.
Aubin and her coworkers conducted a unique set of experiments demonstrating the influence of loading non-proportionality on ratcheting responses of duplex stainless steel. In order to further explore their new observation, a set of experiments was conducted on stainless steel (SS) 304L under various biaxial stress-controlled non-proportional histories. This new set of data reiterated Aubin and her coworkers’ observation and illustrated many new responses critical to model development and validation. Two recent and different classes of cyclic plasticity models, the modified Chaboche model proposed by Bari and Hassan and the version of the multi-mechanism model proposed by Taleb and Cailletaud, are evaluated in terms of their simulations of the SS304L non-proportional ratcheting responses. A modeling scheme for non-proportional ratcheting responses using the kinematic hardening rule parameters in addition to the conventionally used isotropic hardening rule parameter (yield surface size change) in the modified Chaboche model is evaluated. Strengths and weaknesses of the models in simulating the non-proportional ratcheting responses are identified. Further improvements of these models needed for improving the non-proportional ratcheting simulations are suggested in the paper.  相似文献   

3.
A recent study by Hassan et al. [Hassan, T., Taleb, L., Krishna, S., 2008. Influences of nonproportional loading paths on ratcheting responses and simulations by two recent cyclic plasticity models. Int. J. Plasticity, 24, 1863–1889.] demonstrated that some of the nonproportional ratcheting responses under stress-controlled loading histories cannot be simulated reasonably by two recent cyclic plasticity models. Two major drawbacks of the models identified were: (i) the stainless steel 304 demonstrated cyclic hardening under strain-controlled loading whereas cyclic softening under stress-controlled loading, which depends on the strain-range and which the existing models cannot describe; (ii) the change in biaxial ratcheting responses due to the change in the degree of nonproportionality were not simulated well by the models. Motivated by these findings, two modified cyclic plasticity models are evaluated in predicting a broad set of cyclic and ratcheting response of stainless steel 304. The experimental responses used in evaluating the modified models included both proportional (uniaxial) and nonproportional (biaxial) loading responses from Hassan and Kyriakides [Hassan, T., Kyriakides, S., 1994a. Ratcheting of cyclically hardening and softening materials. Part I: uniaxial behavior. Int. J. Plasticity, 10, 149–184; Hassan, T., Kyriakides, S., 1994b. Ratcheting of cyclically hardening and softening materials. Part II: multiaxial behavior. Int. J. Plasticity, 10, 185–212.] and Hassan et al. [Hassan, T., Taleb, L., Krishna, S., 2008. Influences of nonproportional loading paths on ratcheting responses and simulations by two recent cyclic plasticity models. Int. J. Plasticity, 24, 1863–1889.] The first model studied is a macro-scale, phenomenological, constitutive model originally proposed by Chaboche et al. [Chaboche, J.L., Dang-Van, K., Cordier, G., 1979. Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. In: Proceedings of the Fifth International Conference on SMiRT, Div. L, Berlin, Germany, L11/3.]. This model was systematically modified for incorporating strain-range dependent cyclic hardening–softening, and proportional and nonproportional loading memory parameters. The second model evaluated is a polycrystalline model originally proposed by Cailletaud [Cailletaud, G., 1992. A micromechanical approach to inelastic behavior of metals. Int. J. Plasticity, 8, 55–73.] based on crystalline slip mechanisms. These two models are scrutinized against simulating hysteresis loop shape, cyclic hardening–softening, cross-effect, cyclic relaxation, subsequent cyclic softening and finally a broad set of ratcheting responses under uniaxial and biaxial loading histories. The modeling features which improved simulations for these responses are elaborated in the paper. In addition, a novel technique for simulating both the monotonic and cyclic responses with one set of model parameters is developed and validated.  相似文献   

4.
This work follows a series of experiments carried out earlier at INSA of Rouen (Hassan, T., Taleb, L., Krishna, S., 2008. Influence of non-proportional loading paths on ratcheting responses and simulations by two recent cyclic plasticity models. Int. J. Plast. 24, 1863–1889). It investigates the elastoplastic cyclic behavior of a 304L stainless steel at room temperature. In a first step the cross path effect on ratcheting is confirmed, as well as the crucial role of the loading path non-proportionality. Strain controlled tests are also conducted for different strain amplitudes and loading paths. Cross-hardening effect appears more important when the shearing sequence is followed by the axial one. Moreover for alternating axial and shearing cycles, this phenomenon occurs after each crossing sequence leading to a very significant strain hardening, at least of the same order as the one obtained after a circular strain path. Yet, the magnitude of the observed over hardening does not necessarily seem a function of the cumulated plastic strain.  相似文献   

5.
The challenge of describing in a generalized mathematical pattern the inelastic behavior of metals has led to the development of several constitutive models, especially in the field of cyclic plasticity, where phenomena with particular importance to low-cycle fatigue appear. Significant research efforts have been undertaken in studying and simulating the cyclic elastoplastic response of steels, while light metals, like aluminum and titanium, have attracted less attention. This paper provides a preliminary examination on the capacity of the Multi-component Armstrong and Frederick Multiplicative (MAFM) model to simulate effectively the cyclic mean stress relaxation and ratcheting of Aluminum Alloy 7050. The derived results indicate that the model is capable to describe successfully the complex cyclic plasticity phenomena exhibited by this alloy.  相似文献   

6.
Low cycle fatigue experiments have been conducted on 304LN stainless steel in ambient air at room temperature. Uniaxial ratcheting behavior has also been studied on this material and in both engineering and true stress controlling modes. It is shown that material’s cyclic hardening/softening behavior in low cycle fatigue and in ratcheting is dependent not only on material but also on the loading condition. Improvement of ratcheting life and mean stress dependent hardening are observed in the presence of mean stress. A method based on the strain energy density (SED) is used to represent cyclic hardening/softening behavior of the material in this work. The decrease of SED with cycles is an indication that the life in low cycle fatigue and in ratcheting is improved. The SED represents the area of the hysteresis loops.  相似文献   

7.
A multiplicative hardening function and a unified evolution rule of the hardening factors are proposed. The hardening factorf 1 is introduced to describe cyclic hardening with respect to the plastic strain range, whilef 2 andf 3 describe, respectively, instantaneous and hereditary additional hardening with respect to the nonproportionality of the plastic strain path. Two material dependent memory parametersa 1 anda 3 are introduced to keep the memory of the largest cyclic and additional hardening in the previous plastic deformation history. Different hardening mechanisms are then embedded into a thermomechanically consistent constitutive equation through the hardening function. The constitutive response of 304 and 316 stainless steels subjected to biaxial nonproportional cyclic loading is analyzed and the proposed model is critically verified by comparing the results with experimental results obtained by Tanaka et al., and Ohashi et al. The project supported by National Natural Science Foundation of China  相似文献   

8.
This paper evaluates seven cyclic plasticity models for structural ratcheting response simulations. The models evaluated are bilinear (Prager), multilinear (Besseling), Chaboche, Ohno–Wang, Abdel Karim–Ohno, modified Chaboche (Bari and Hassan) and modified Ohno–Wang (Chen and Jiao). The first three models are already available in the ANSYS finite element package, whereas the last four were implemented into ANSYS for this study. Experimental responses of straight steel pipes under cyclic bending with symmetric end rotation history and steady internal pressure were recorded for the model evaluation study. It is demonstrated that when the model parameters are determined from the material response data, none of the models evaluated perform satisfactorily in simulating the straight pipe diameter change and circumferential strain ratcheting responses. A detailed parameter sensitivity study with the modified Chaboche model was conducted to identify the parameters that influence the ratcheting simulations and to determine the ranges of the parameter values over which a genetic algorithm can search for refinement of these values. The refined parameter values improved the simulations of straight pipe ratcheting responses, but the simulations still are not acceptable. Further, improvement in cyclic plasticity modeling and incorporation of structural features, like residual stresses and anisotropy of materials in the analysis will be essential for advancement of low-cycle fatigue response simulations of structures.  相似文献   

9.
以纯铜棒材试样为研究对象,通过试验研究1、4、8道次等通道转角挤压(ECAP)后材料的单轴拉压循环行为,探讨ECAP后材料循环特性的变化,得到以下结论:(1)具有循环硬化特性的纯铜进行ECAP挤压后,其循环特性可转变为循环软化;(2)第一道次ECAP挤压对材料循环应力应变响应的强化作用最大,后续道次挤压对强化的效用迅速降低,4道次以后挤压的强化作用似可忽略不计;(3)因循环软化,纯铜经ECAP挤压后的循环应力应变曲线大大低于其单调拉伸应力应变曲线,与未经ECAP挤压的结果相反.论文研究表明,评估ECAP对材料的强化效果需同时考察材料单调加载和循环加载的力学性能.  相似文献   

10.
Ti–6Al–4V is a dual phase material with range of possible complex microstructures. It is well known that mechanical behavior of Ti–6Al–4V is significantly affected by its texture and microstructure morphology. A three-dimensional microstructure-based constitutive model for monotonic and cyclic deformation of duplex Ti–6Al–4V is developed and implemented. The model includes length scale effects associated with dislocation interactions with different microstructure features, and is calibrated using polycrystalline finite element simulations to fit the measured macroscopic responses (overall stress–strain behavior) of a duplex heat treated Ti–6Al–4V alloy subjected to a complex cyclic loading history. Representative microstructures are simulated using a three-dimensional finite element mesh with periodic boundary conditions imposed in all directions. The measured orientation and misorientation distributions of grains of this duplex Ti–6Al–4V are considered, and similar probability density distributions of the crystallographic orientations are assigned to the finite element mesh. The misorientation distributions are then fit using the simulated annealing method. Effects of microstructural features are examined and compared with the experimental data in terms of their influence on the material yield strength. The results are shown to be in good agreement with the experimental observations.  相似文献   

11.
Under cyclic loading, elastomeric material exhibits strong inelastic responses such as stress-softening due to Mullins effect, hysteresis and permanent set. The corresponding inelastic responses are observed in both dry and swollen rubbers. Moreover, it is observed that inelastic responses depend strongly on the swelling level. For engineering applications involving the interaction and contact between rubber components and solvent, the understanding and consideration of swelling are essential pre-requisites for durability analysis. In this paper, a simple phenomenological model describing Mullins effect in swollen rubbers under cyclic loading is proposed. More precisely, the proposed model adopts the concept of evolution of soft domain microstructure with deformation originally proposed by Mullins and Tobin. The swollen rubbers are obtained by immersing dry ones in solvent until desired degrees of swelling are achieved. Subsequently, their mechanical responses, in particular Mullins effect, under cyclic loading are investigated. These experimental data are used to assess the efficiency of the proposed model. Results show that the model agrees qualitatively well with experiments. Furthermore, the model captures well the fundamental features of strain-induced softening.  相似文献   

12.
A self-consistent theoretical framework is developed to model the thermo-mechanical behaviors of irradiated face-centered cubic (FCC) polycrystalline metals at low to intermediate homologous temperatures. In this model, both irradiation and temperature effects are considered at the grain level with the assist of a tensorial plasticity crystal model, and the elastic-visocoplastic self-consistent method is applied for the scale transition from individual grains to macroscopic polycrystals. The proposed theory is applied to analyze the mechanical behaviors of irradiated FCC copper. It is found that: (1) the numerical results match well with experimental data, which includes the comparison of results for single crystals under the load in different directions, and for polycrystals with the influences of irradiation and temperature. Therefore, the feasibility and accuracy of the present model are well demonstrated. (2) The main irradiation effects including irradiation hardening, post-yield softening, strain-hardening coefficient (SHC) dropping and the non-zero stress offset are all captured by the proposed model. (3) The increase of temperature results in the decrease of yield strength and SHC. The former is attributed to the weakened dislocation–defect interaction, while the latter is due to the temperature-strengthened dynamic recovery of dislocations through the thermally activated mechanism. The present model may provide a theoretical guide to predict the thermo-mechanical behaviors of irradiated FCC metals for the selection of structural materials in nuclear equipment.  相似文献   

13.
We propose a set of models for the post-irradiation deformation response of polycrystalline FCC metals. First, a defect- and dislocation-density based evolution model is developed to capture the features of irradiation-induced hardening as well as intra-granular softening. The proposed hardening model is incorporated within a rate-independent single crystal plasticity model. The result is a non-homogeneous deformation model that accounts for defect absorption on the active slip planes during plastic loading. The macroscopic non-linear constitutive response of the polycrystalline aggregate of the single crystal grains is then obtained using a micro–macro transition scheme, which is realized within a Jacobian-free multiscale method (JFMM). The Jacobian-free approach circumvents explicit computation of the tangent matrix at the macroscale by using a Newton–Krylov process. This has a major advantage in terms of storage requirements and computational cost over existing approaches based on homogenized material coefficients in which explicit Jacobian computation is required at every Newton step. The mechanical response of neutron-irradiated single and polycrystalline OFHC copper is studied and it is shown to capture experimentally observed grain-level phenomena.  相似文献   

14.
In this paper we consider the elastoplastic behavior of the 304L stainless steel under cyclic loading at room temperature. After the experimental investigations presented in Taleb and Hauet (2009), the present work deals with modeling in the light of the new observations. An improved version of the multimechanism model is proposed in which the isotropic variable is revisited in order to take into account the non-proportional effect of the loading as well as the strain memory phenomenon. A particular attention has been paid to the identification process in order to capture the main important phenomena: relative parts of isotropic and kinematic hardening, time dependent effects, non-proportionality effect, strain amplitude dependence. Only strain controlled tests have been used for the identification process. The capabilities of the model with “only” 17 parameters are evaluated considering a number of proportional and non-proportional stress and strain controlled tests.  相似文献   

15.
An essential work on the constitutive modeling of rolled sheet metals is the consideration of hardening-induced anisotropy. In engineering applications, we often use testing results of four specified experiments, three uniaxial-tensions in rolling, transverse and diagonal directions and one equibiaxial-tension, to describe the anisotropic features of rolled sheet metals. In order to completely take all these experimental results, including stress-components and strain-ratios, into account in the constitutive modeling for presenting hardening-induced anisotropy, an appropriate yield model is developed. This yield model can be characterized experimentally from the offset of material yield to the end of material hardening. Since this adaptive yield model can directly represent any subsequent yielding state of rolled sheet metals without the need of an artificially defined “effective stress”, it makes the constitutive modeling simpler, clearer and more physics-based. This proposed yield model is convex from the initial yield state till the end of strain-hardening and is well-suited in implementation of finite element programs.  相似文献   

16.
17.
A nonlinear kinematic hardening rule is developed here within the framework of thermodynamic principles. The derived kinematic hardening evolution equation has three distinct terms: two strain hardening terms and a dynamic recovery term that operates at all times. The proposed hardening rule, which is referred in this paper as the FAPC (Fredrick and Armstrong–Phillips–Chaboche) kinematic hardening rule, shows a combined form of the Frederick and Armstrong backstress evolution equation, Phillips evolution equation, and Chaboche series rule. A new term is incorporated into the Frederick and Armstrong evolution equation that appears to have agreement with the experimental observations that show the motion of the center of the yield surface in the stress space is directed between the gradient to the surface at the stress point and the stress rate direction at that point. The model is further modified in order to simulate nonproportional cyclic hardening by proposing a measure representing the degree of nonproportionality of loading. This measure represents the topology of the incremental stress path. Numerically, it represents the angle between the current stress increment and the previous stress increment, which is interpreted through the material constants of the kinematic hardening evolution equation. This new kinematic hardening rule is incorporated in a material constitutive model based on the von Mises plasticity type and the Chaboche isotropic hardening type. Numerical integration of the incremental elasto-plastic constitutive equations is based on a simple semi-implicit return-mapping algorithm and the full Newton–Raphson iterative method is used to solve the resulting nonlinear equations. Experimental simulations are conducted for proportional and non-proportional cyclic loadings. The model shows good correlation with the experimental results.  相似文献   

18.
To describe the work hardening process of polycrystals processed using various thermomechanical cycles with isochronal annealing from 500 to 900 °C, a dislocation based strain hardening model constructed in the basis of the so-called Kocks–Mecking model is proposed. The time and temperature dependence of flow stress is accounted via grain boundary migration, and the migration is related to annihilation of extrinsic grain boundary dislocations (EGBD’s) by climb via lattice diffusion of vacancies at the triple points. Recovery of yield stress is associated with changes in the total dislocation density term ρT. A sequence of deformation and annealing steps generally result in reduction of flow stress via the annihilation of the total dislocation density ρT defined as the sum of geometrically necessary dislocations ρG and statistically stored dislocations ρS. The predicted variation of yield stress with annealing temperature and cold working stages is in agreement with experimental observations. An attempt is made to determine the mathematical expressions which best describe the deformation behaviour of polycrystals in uniaxial deformation.  相似文献   

19.
Single crystal plasticity based on a representative characteristic length is proposed and introduced into a homogenization approach based on finite element analyses, which are applied to characterization of distinctive yielding behaviors of polycrystalline metals, yield-point elongation, and grain size strengthening. The computational manner for an implicit stress update is derived with the framework of a standard multi-surface plasticity at finite strain, where the evolution of the characteristic lengths are numerically converted from the accumulated slips of all of slip systems by exploiting the mathematical feature of the characteristic length as the intermediate function of the plastic internal variables. Furthermore, a constitutive model for a single crystal reproduces the stress–strain curve divided into three parts. Using two-scale finite element analysis, the macroscopic stress–strain response with yield-point elongation under a situation of low dislocation density is reproduced. Finally, the grain size effect on the yield strength is analyzed with modeling of the grain boundary in the context of the proposed constitutive model and is discussed from both macroscopic and microscopic views.  相似文献   

20.
Deformation and strength behavior of geomaterials in the pre- and post-failure regimes are of significant interest in various geomechanics applications. To address the need for development of a realistic constitutive framework, which allows for an accurate simulation of pre-failure response as well as an objective and meaningful post-failure response, a strain gradient plasticity model is formulated by incorporating the spatial gradients of elastic strain in the evolution of stress and gradients of plastic strain in the evolution of the internal variables. In turn, gradients of only kinematic variables are included in the constitutive equations. The resulting constitutive equations along with the balance of linear momentum for the continuum are cast as a coupled system of equations, with displacements and plastic multiplier appearing as the primary unknowns in the final governing integral equations. To avoid singular stress fields along element boundaries, a finite element discretization of the governing equations would require C2 continuous displacements and C1 continuous plastic multiplier, which is undesirable from a numerical implementation point of view. This issue is naturally resolved when a meshfree discretization is used. Hence the developed model is formulated within the framework of a meshfree environment. The new constitutive model allows an analysis of grain size effects on strength and dilatancy of rocks. The role and effectiveness of the new gradient terms on regularizing the underlying boundary value problems of geomechanics beyond the initiation of strain localization will be assessed in a future paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号