首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 719 毫秒
1.
In the present paper, a finite element formulation based on non-associated plasticity is developed. In the constitutive formulation, isotropic hardening is assumed and an evolution equation for the hardening parameter consistent with the principle of plastic work equivalence is introduced. The yield function and plastic potential function are considered as two different functions with functional form as the yield function of Hill [Hill, R., 1948. Theory of yielding and plastic flow of anisotropic metals. Proc. Roy. Soc. A 193, 281–297] or Karafillis–Boyce associated model [Karafillis, A.P. Boyce, M., 1993. A general anisotropic yield criterion using bounds and a transformation weighting tensor. J. Mech. Phys. Solids 41, 1859–1886]. Algorithmic formulations of constitutive models that utilize associated or non-associated flow rule coupled with Hill or Karafillis–Boyce stress functions are derived by application of implicit return mapping procedure. Capabilities in predicting planar anisotropy of the Hill and Karafillis–Boyce stress functions are investigated considering material data of Al2008-T4 and Al2090-T3 sheet samples. The accuracy of the derived stress integration procedures is investigated by calculating iso-error maps.  相似文献   

2.
Biaxial proportional loading such as tension (compression)–internal pressure and bi-compression tests are performed on a Cu-Zn-Al and Cu-Al-Be shape memory polycrystals. These tests lead to the experimental determination of the initial surface of phase transformation (austenite→martensite) in the principal stress space (σ12). A first “micro–macro” modeling is performed as follows. Lattice measurements of the cubic austenite and the monoclinic martensite cells are used to determine the “nature” of the phase transformation, i.e. an exact interface between the parent phase and an untwinned martensite variant. The yield surface is obtained by a simple (Sachs constant stress) averaging procedure assuming random texture. A second modeling, performed in the context of the thermodynamics of irreversible processes, consists of a phenomenological approach at the scale of the polycrystal. These two models fit the experimental phase transformation surface well.  相似文献   

3.
The bi-axial experimental equipment [Flores, P., Rondia, E., Habraken, A.M., 2005a. Development of an experimental equipment for the identification of constitutive laws (Special Issue). International Journal of Forming Processes] developed by Flores enables to perform Bauschinger shear tests and successive or simultaneous simple shear tests and plane strain tests. Flores investigates the material behavior with the help of classical tensile tests and the ones performed in his bi-axial machine in order to identify the yield locus and the hardening model. With tests performed on one steel grade, the methods applied to identify classical yield surfaces such as [Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic materials. Proceedings of the Royal Society of London A 193, 281–297; Hosford, W.F., 1979. On yield loci of anisotropic cubic metals. In: Proceedings of the 7th North American Metalworking Conf. (NMRC), SME, Dearborn, MI, pp. 191–197] ones as well as isotropic Swift type hardening, kinematic Armstrong–Frederick or Teodosiu and Hu hardening models are explained. Comparison with the Taylor–Bishop–Hill yield locus is also provided. The effect of both yield locus and hardening model choices is presented for two applications: plane strain tensile test and Single Point Incremental Forming (SPIF).  相似文献   

4.
Experimental measurement of the plastic biaxial mechanical response for an aluminum alloy (AA5754-O) sheet metal is presented. Traditional methods of multiaxial sheet metal testing require the use of finite element analysis (FEA) or other assumptions of material response to determine the multiaxial true stress versus true strain behavior of the as-received sheet material. The method used here strives to produce less ambiguous measurements of data for a larger strain range than previously possible, through a combination of the Marciniak flat bottom ram test and an X-ray diffraction technique for stress measurement. The study is performed in conjunction with a study of the microstructural changes that occur during deformation, and these microstructural results are briefly mentioned in this work. Issues of calibration and applicability are discussed, and results are presented for uniaxial (U), plane strain (PS), and balanced biaxial (BB) extension. The results show repeatable behavior (within quantified uncertainties) for U to 20%, PS to almost 15%, and BB to above 20% in-plane strains. The results are first compared with three common yield locus models (von Mises’, Hill’48, and Hosford’79), and show some unexpected results in the shape change of the yield locus at high strain levels (>5% strain). These changes include the rotation of the locus toward the von Mises surface and elongation in the balanced biaxial direction. Comparison with a more complex yield locus model (Yld2000-2d with eight adjustable parameters) showed that the locus elongation in the biaxial direction could be fit well (for a specific level of work), but at the detriment of fit to the plane strain data. Artificially large plastic strain ratios would be needed to match both the biaxial and plane strain behavior even with this more complex model.  相似文献   

5.
An efficient Cartesian cut-cell/level-set method based on a multiple grid approach to simulate turbulent turbomachinery flows is presented. The finite-volume approach in an unstructured hierarchical Cartesian setup with a sharp representation of the complex moving boundaries embedded into the computational domain, which are described by multiple level-sets, ensures a strict conservation of mass, momentum, and energy. Furthermore, an efficient kinematic motion level-set interface method for the rotation of embedded boundaries described by multiple level-set fields on a computational domain distributed over several processors is introduced. This method allows the simulation of multiple boundaries rotating relatively to each other in a fixed frame of reference. To demonstrate the efficiency of the numerical method and the quality of the computed findings the generic test problem of a rotating cylinder surrounded by a stationary hull and the flow over a ducted rotating axial fan with a stationary turbulence generating grid at the inflow are simulated. The computational results of the axial fan show a good agreement with the experimental data.  相似文献   

6.
This paper is concerned with the multiscale simulation of plastic deformation of metallic specimens using physically-based models that take into account their polycrystalline microstructure and the directionality of deformation mechanisms acting at single-crystal level. A polycrystal model based on self-consistent homogenization of single-crystal viscoplastic behavior is used to provide a texture-sensitive constitutive response of each material point, within a boundary problem solved with finite elements (FE) at the macroscale. The resulting constitutive behavior is that of an elasto-viscoplastic material, implemented in the implicit FE code ABAQUS. The widely-used viscoplastic selfconsistent (VPSC) formulation for polycrystal deformation has been implemented inside a user-defined material (UMAT) subroutine, providing the relationship between stress and plastic strain-rate response. Each integration point of the FE model is considered as a polycrystal with a given initial texture that evolves with deformation. The viscoplastic compliance tensor computed internally in the polycrystal model is in turn used for the minimization of a suitable-designed residual, as well as in the construction of the elasto-viscoplastic tangent stiffness matrix required by the implicit FE scheme.Uniaxial tension and simple shear of an FCC polycrystal have been used to benchmark the accuracy of the proposed implicit scheme and the correct treatment of rotations for prediction of texture evolution. In addition, two applications are presented to illustrate the potential of the multiscale strategy: a simulation of rolling of an FCC plate, in which the model predicts the development of different textures through the thickness of the plate; and the deformation under 4-point bending of textured HCP bars, in which the model captures the dimensional changes associated with different orientations of the dominant texture component with respect to the bending plane.  相似文献   

7.
The aim of this work is to construct yield surfaces to describe initial yielding and characterize hardening behavior of a highly anisotropic material. A methodology for constructing yield surfaces for isotropic materials using axial–torsion loading is extended to highly anisotropic materials. The technique uses a sensitive definition of yielding based on permanent strain rather than offset strain, and enables multiple yield points and multiple yield surfaces to be conducted on a single specimen. A target value of 20 × 10−6 is used for Al2O3 fiber reinforced aluminum laminates having a fiber volume fraction of 0.55. Sixteen radial probes are used to define the yield locus in the axial–shear stress plane. Initial yield surfaces for [04], [904], and [0/90]2 fibrous aluminum laminates are well described by ellipses in the axial–shear stress plane having aspect ratios of 10, 2.5, and 3.3, respectively. For reference, the aspect ratio of the Mises ellipse for an isotropic material is 1.73. Initial yield surfaces do not have a tension–compression asymmetry. Four overload profiles (plus, ex, hourglass, and zee) are applied to characterize hardening of a [0/90]2 laminate by constructing 30 subsequent yield surfaces. Parameters to describe the center and axes of an ellipse are regressed to the yield points. The results clearly indicate that kinematic hardening dominates so that material state evolution can be described by tracking the center of the yield locus. For a nonproportional overload of (στ) = (500, 70) MPa, the center of the yield locus translated to (στ) = (430, 37) MPa and the ellipse major axis was only 110 MPa.  相似文献   

8.
The texture development mechanism during the extrusion of magnesium alloy is investigated by experimental observation and numerical analysis. First, we perform a finite element analysis of a full extrusion process using a phenomenological constitutive equation, and it is confirmed that the loading condition of the extrusion process near the central axis of the billet is approximated by an equi-biaxial compression mode. Then, the equi-biaxial compression problem is adopted as a simplified boundary value problem to be solved using a crystal plasticity model to clarify the detailed texture development mechanism during the extrusion process. The crystal plasticity analysis of equi-biaxial compression successfully reproduces the texture development from an initial random texture to the final experimentally observed texture. The effects of the deformation modes (i.e. slip and twinning systems) implemented in the calculation and the reference stress ratio of basal to nonbasal slip systems on texture development are studied in detail. Finally, the mechanism of texture development during the extrusion process is discussed in terms of the lattice rotation caused by the activated slip systems.  相似文献   

9.
10.
The finite element method is used to numerically simulate localized necking in AA6111-T4 under stretching. The measured EBSD data (grain orientations and their spatial distributions) are directly incorporated into the finite element model and the constitutive response at an integration point is described by the single crystal plasticity theory. We assume that localized necking is associated with surface instability, the onset of unstable growth in surface roughening. It is demonstrated that such a surface instability/necking is the natural outcome of the present approach, and the artificial initial imperfection necessitated by the macroscopic M–K approach [Marciniak and Kuczynski (1967). Int. J. Mech. Sci. 9, 609–620] is not relevant in the present analysis. The effects of spatial orientation distribution, material strain rate sensitivity, texture evolution, and initial surface topography on necking are discussed. It is found that localized necking depends strongly on both the initial texture and its spatial orientation distribution. It is also demonstrated that the initial surface topography has only a small influence on necking.  相似文献   

11.
提出了利用率相关晶体塑性模型标定织相可调本构模型的求解步骤,得出了一组依赖于晶粒间相互作用假设而独立于具体板材织构的本构相关系数.以此为基础再结合板材织构系数所得出的本构模型系数可避免出现屈服面非外凸的情形.利用所提求解步骤对在不同热处理条件下产生不同织构的AL5052铝合金板的深拉成形过程进行了有限元模拟.结果再现了典型织构在板材成形过程中所出现的塑性各向异性,从而表明求解步骤的可行性.  相似文献   

12.
Plastic constitutive relations are derived for a class of anisotropic porous materials consisting of coaxial spheroidal voids, arbitrarily oriented relative to the embedding orthotropic matrix. The derivations are based on nonlinear homogenization, limit analysis and micromechanics. A variational principle is formulated for the yield criterion of the effective medium and specialized to a spheroidal representative volume element containing a confocal spheroidal void and subjected to uniform boundary deformation. To obtain closed form equations for the effective yield locus, approximations are introduced in the limit-analysis based on a restricted set of admissible microscopic velocity fields. Evolution laws are also derived for the microstructure, defined in terms of void volume fraction, aspect ratio and orientation, using material incompressibility and Eshelby-like concentration tensors. The new yield criterion is an extension of the well known isotropic Gurson model. It also extends previous analyses of uncoupled effects of void shape and material anisotropy on the effective plastic behavior of solids containing voids. Preliminary comparisons with finite element calculations of voided cells show that the model captures non-trivial effects of anisotropy heretofore not picked up by void growth models.  相似文献   

13.
14.
By using the Finite Element Inverse Approach based on the Hill quadratic anisotrop-ically yield criterion and the quadrilateral element, a fast analyzing software-FASTAMP for the sheet metal forming is developed. The blank shapes of three typical stampings are simulated and compared with numerical results given by the AUTOFORM software and experimental results, respectively. The comparison shows that the FASTAMP can predict blank shape and strain distribution of the stamping more precisely and quickly than those given by the traditional methods and the AUTOFORM.  相似文献   

15.
When texture is incorporated in the finite element simulation of a metal forming process, much computer time can be saved by replacing continuous texture and corresponding yield locus updates by intermittent updates after strain intervals of e.g. 20%. The hypothesis that the evolution of the anisotropic properties of a polycrystalline material during such finite interval of plastic deformation can be modelled by just rotating the initial texture instead of continuously updating it by means of a polycrystal deformation model is tested in this work. Two spins for rotating the frame have been assessed: the classical rigid body spin and a crystal plasticity based “Mandel spin” (calculated from the rotated initial texture) which is the average of the spins of all the crystal lattices of the polycrystal. Each of these methods was used to study the evolution of the yield locus and the r-value distribution during the 20% strain interval. The results were compared to those obtained by simulating the texture evolution continuously using a polycrystal deformation model. When the texture was not updated during deformation, it was found that for most initial textures the Mandel spin does not perform better than the rigid body spin, except for some special initial textures for which the Mandel spin is much better. The latter ones are textures which are almost stable for the corresponding strain mode. When the texture was updated after each strain interval of e.g. 20% the Mandel spin performed much better than the rigid body spin.  相似文献   

16.
The modeling of anisotropic hardening, in particular for non-proportional loading paths, is a challenging task for advanced macroscopic models. The complex distortion of the yield locus is related to the activation and cross-hardening of different slip systems, depending on crystallographic orientations. These physical mechanisms can be taken into account in polycrystalline models but the computation times are enormous. The novel approach detailed in Part I (Rousselier et al., 2009) consists in: (i) drastically reducing the number of crystallographic orientations to save the computation cost, (ii) applying a parameter calibration procedure to obtain a good agreement with the experimental database. This methodology is first applied here to the anisotropic hardening in the proportional loadings of the strongly anisotropic aluminum alloy of Part I. Very good modeling is achieved with only eight crystallographic orientations. Different levels of additional hardening in biaxial proportional loading as compared to uniaxial loading can be modeled with the same polycrystalline model. For this, only the parameter calibration has to be performed with different databases. The same methodology has also been applied for the modeling of isotropic behavior. The best compromise between model accuracy and numerical cost is obtained with fourteen orientations. The deviations from isotropy are acceptable in all loading directions. Different levels of hardening in orthogonal loading: simple shear followed by simple tension, are achieved without any modification of the model equations. Only the parameter calibration has to be performed with different hardening levels in the database. FE calculations of a deep drawing test have been performed. The CPU time of the polycrystalline model is only five times larger than that with the simple von Mises model. The CPU time with texture evolution is further increased by a factor of two. The effects of texture evolution in rolling of the initially isotropic fcc material have been investigated. The resulting texture and hardening are qualitatively good.  相似文献   

17.
The main objective of this paper is to develop a generalized finite element formulation of stress integration method for non-quadratic yield functions and potentials with mixed nonlinear hardening under non-associated flow rule. Different approaches to analyze the anisotropic behavior of sheet materials were compared in this paper. The first model was based on a non-associated formulation with both quadratic yield and potential functions in the form of Hill’s (1948). The anisotropy coefficients in the yield and potential functions were determined from the yield stresses and r-values in different orientations, respectively. The second model was an associated non-quadratic model (Yld2000-2d) proposed by Barlat et al. (2003). The anisotropy in this model was introduced by using two linear transformations on the stress tensor. The third model was a non-quadratic non-associated model in which the yield function was defined based on Yld91 proposed by Barlat et al. (1991) and the potential function was defined based on Yld89 proposed by Barlat and Lian (1989). Anisotropy coefficients of Yld91 and Yld89 functions were determined by yield stresses and r-values, respectively. The formulations for the three models were derived for the mixed isotropic-nonlinear kinematic hardening framework that is more suitable for cyclic loadings (though it can easily be derived for pure isotropic hardening). After developing a general non-associated mixed hardening numerical stress integration algorithm based on backward-Euler method, all models were implemented in the commercial finite element code ABAQUS as user-defined material subroutines. Different sheet metal forming simulations were performed with these anisotropic models: cup drawing processes and springback of channel draw processes with different drawbead penetrations. The earing profiles and the springback results obtained from simulations with the three different models were compared with experimental results, while the computational costs were compared. Also, in-plane cyclic tension–compression tests for the extraction of the mixed hardening parameters used in the springback simulations were performed for two sheet materials.  相似文献   

18.
19.
In this work, non-associative finite strain anisotropic elastoplasticity fully coupled with ductile damage is considered using a thermodynamically consistent framework. First, the kinematics of large strain based on multiplicative decomposition of the total transformation gradient using the rotating frame formulation, is recalled and different objective derivatives defined. By using different anisotropic equivalent stresses (quadratic and non-quadratic) in yield function and in plastic potential, the evolution equations for all the dissipative phenomena are deduced from the generalized normality rule applied to the plastic potential while the consistency condition is still applied to the yield function. The effect of the objective derivatives and the equivalent stresses (quadratic or non-quadratic) on the plastic flow anisotropy and the hardening evolution with damage is considered. Numerical aspects mainly related to the time integration of the fully coupled constitutive equations are discussed. Applications are made to the AISI 304 sheet metal by considering different loading paths as tensile, shear, plane tensile and bulge tests. For each loading path the effect of the rotating frame, the equivalent stress (quadratic or non-quadratic) and the normality rule (with respect to yield function or to the plastic potential) are discussed on the light of some available experimental results.  相似文献   

20.
Micromechanics of coalescence in ductile fracture   总被引:2,自引:0,他引:2  
Significant progress has been recently made in modelling the onset of void coalescence by internal necking in ductile materials. The aim of this paper is to develop a micro-mechanical framework for the whole coalescence regime, suitable for finite-element implementation. The model is defined by a set of constitutive equations including a closed form of the yield surface along with appropriate evolution laws for void shape and ligament size. Normality is still obeyed during coalescence. The derivation of the evolution laws is carefully guided by coalescence phenomenology inferred from micromechanical unit-cell calculations. The major implication of the model is that the stress carrying capacity of the elementary volume vanishes as a natural outcome of ligament size reduction. Moreover, the drop in the macroscopic stress accompanying coalescence can be quantified for many initial microstructures provided that the microstructure state is known at incipient coalescence. The second part of the paper addresses a more practical issue, that is the prediction of the acceleration rate δ in the Tvergaard-Needleman phenomenological approach to coalescence. For that purpose, a Gurson-like model including void shape effects is used. Results are presented and discussed in the limiting case of a non-hardening material for different initial microstructures and various stress states. Predicted values of δ are extremely sensitive to stress triaxiality and initial spacing ratio. The effect of initial porosity is significant at low triaxiality whereas the effect of initial void shape is emphasized at high triaxiality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号