共查询到20条相似文献,搜索用时 0 毫秒
1.
使用分离式霍布金森压杆(SHPB)对2种TC4(Ti-6Al-4V)试样(单边剪切试样与双边剪切试样)在应变率104 s-1下进行动态剪切加载,利用SIM D8高速照相系统捕捉了绝热剪切带扩展的整个历程,得到了TC4在拍照时刻的应力应变曲线;使用金相显微镜和SEM扫描电镜对TC4绝热剪切带的微观形貌进行观察,发现绝热剪切带宽度为5~12 μm,断口从韧窝断裂演变为解理断裂,可观测到韧窝状与河流花样断口形貌,但是并未看到相变的发生;对2种试样就产生绝热剪切带的形式与敏感性进行了分析,实验表明双边试样更易产生绝热剪切带;通过高速照相系统的标定换算,得到TC4绝热剪切带产生的临界剪切应变在78%~88%之间。在SHPB动态加载条件下,TC4绝热剪切带的扩展速度在460~1 250 m/s之间,且应变率越高,剪切带扩展越快,扩展平均速度与名义应变率近似呈线性关系;另外,在同一加载速率下,剪切带并不是匀速扩展,其扩展速度随载荷的增加而不断增加。 相似文献
2.
The effect of deformation history on the plastic behaviour of thin-walled tubular specimens of aluminium alloy 5056 was examined for three types of abruptly-changing loading or strain paths: namely, reverse loading after pre-loading, orthogonal straining after pre-strain, and orthogonal reloading after pre-loading and then perfect unloading, by applying combined loadings of axial force and torque. The experimental results revealed the following trends. The relation between the magnitudes of stress and strain after the comer is expressed for every pre-strain by a single curve parallel to the extension of the pre-loading curve, when the strain after the corner exceeds 1.2 per cent. Moreover, the relations between the stress reduced by pre-stress and strain after the corner for various values of the same type of pre-strain agree with each other; however, the relation for the tensile pre-strain differs clearly from that for the torsional pre-strain. Thus, A.A. Il'yushin's postulate of isotropy does not hold accurately for the above loading histories for the aluminium alloy even if the effect of the third invariant of stress deviator is eliminated. 相似文献
3.
The thermo-mechanical behavior of polycrystalline shape memory alloy (SMA) under multi-axial loading with varying temperature conditions has been studied by experiments. Recently the research has been extended theoretically and a mechanical model of polycrystalline SMA and the corresponding mesoscopic constitutive equations have been developed. The model presented in this paper is constructed on the basis of the crystal plasticity and the deformation mechanism of SMA. The variants in the crystal grains and the orientations of crystal grains in the polycrystal are considered in the proposed model; the constitutive equations are derived on the basis of the proposed model. The volume fraction of the martensite variants in the transformation process and the influence of the stress state on the transformation process are also considered. Some calculated results obtained by the constitutive equations are presented and compared with the experimental results. It is found that the deformation behavior of SMA under complex loading conditions can be well reproduced by the calculation of the constitutive equations. 相似文献
5.
Constant amplitude fatigue tests at R = 0.1, conducted on the aircraft aluminum alloy 2024 T3, have revealed an appreciable surface hardness increase of the alloy at the nano- and meso-scale during fatigue. The observed surface hardness changes could be monitored with confidence by means of nanoindentations. The degree of hardening increases with increasing number of fatigue cycles following exponential relations. With increasing fatigue stress level degree of hardening increases as well. The observed results provide a basis for developing concepts to early detect and also monitor fatigue damage accumulation in aluminum aircraft structures based on measurements of the material’s hardness changes by means of nanoindentations. 相似文献
7.
The effect of size and loading conditions on the tension and compression stress-strain response of micron-sized planar crystals is investigated using discrete dislocation plasticity. The crystals are taken to have a single active slip system and both small-strain and finite-strain analyses are carried out. When rotation of the tensile axis is constrained, the build-up of geometrically necessary dislocations results in a weak size dependence but a strong Bauschinger effect. On the other hand, when rotation of the tensile axis is unconstrained, there is a strong size dependence, with the flow strength increasing with decreasing specimen size, and a negligible Bauschinger effect. Below a certain specimen size, the flow strength of the crystals is set by the nucleation strength of the initially present Frank-Read sources. The main features of the size dependence are the same for the small-strain and finite-strain analyses. However, the predicted hardening rates differ and the finite-strain analyses give rise to some tension-compression asymmetry. 相似文献
8.
This paper considers the plastic limit state of a thin hollow axisymmetric disk subjected to thermomechanical loading with a uniform pressure distribution on the inner contour and a temperature increasing during deformation. A semi-analytical solution of the formulated boundary-value problem is obtained. Qualitative features of the behavior of the solution with a loss of the load-carrying capacity of the disk are investigated. 相似文献
9.
Atomistic simulations are used to investigate how the stress required for homogeneous nucleation of partial dislocations in single crystal copper under uniaxial loading changes as a function of crystallographic orientation. Molecular dynamics is employed based on an embedded-atom method potential for Cu at 10 and 300 K. Results indicate that non-Schmid parameters are important for describing the calculated dislocation nucleation behavior for single crystal orientations under tension and compression. A continuum relationship is presented that incorporates Schmid and non-Schmid terms to correlate the nucleation stress over all tensile axis orientations within the stereographic triangle. Simulations investigating the temperature dependence of homogeneous dislocation nucleation yield activation volumes of ≈0.5- and activation energies of . For uniaxial compression, full dislocation loop nucleation is observed, in contrast to uniaxial tension. One of the main differences between uniaxial tension and compression is how the applied stress is resolved normal to the slip plane on which dislocations nucleate—in tension, this normal stress is tensile, and in compression, it is compressive. Last, the tension-compression asymmetry is examined as a function of loading axis orientation. Orientations with a high resolved stress normal to the slip plane on which dislocations nucleate have a larger tension-compression asymmetry with respect to dislocation nucleation than those orientations with a low resolved normal stress. The significance of this research is that the resolved stress normal to the slip plane on which dislocations nucleate plays an important role in partial (and full) dislocation loop nucleation in FCC Cu single crystals. 相似文献
10.
The present work aims at studying numerically the influence of void concentration, number of voids and absence/presence of inclusion on void collapse/growth and coalescence in materials submitted to shear loading. Starting from the experimental observation that voiding mostly forms within bands of localised deformation in the form of void sheets, the geometrical configuration retained to that purpose is a layer of periodic cells with 1–5, empty or particle-containing voids, subject to simple shearing. 相似文献
11.
The dynamical behaviour of a simply supported, orthotropic, circular plate subjected to strong blast is considered. The blast is assumed to impart an axisymmetric transverse, velocity which has a general Gaussian distribution spatially. It is concluded that the rate of growth of plastic regimes and the final plastic deformation strongly depend upon the initial Gaussian distribution parameter. 相似文献
12.
为了研究不同应力状态和应变率条件下镁合金MB2的拉伸破坏行为,利用材料试验机和分离式Hopkinson拉杆(SHTB),对镁合金MB2的光滑及缺口圆柱试件进行了动静态拉伸加载;拟合得到了镁合金MB2的动静态拉伸本构关系,建立了其修正的Johnson-Cook失效破坏准则,并对不同试件的拉伸破坏行为进行了数值模拟;利用SEM对宏观破坏模式对应的微观损伤机理进行了分析。结果表明,随着应力三轴度的增加,镁合金MB2的等效破坏应变先增大后减小,宏观破坏模式由剪切转为正拉断,微观损伤机制由混合断裂转变为韧窝断裂;而随着应变率的增加,等效破坏应变不断减小,破坏模式不发生改变。Johnson-Cook本构关系和修正后的Johnson-Cook失效破坏准则能较好地拟合动态静态拉伸实验结果并预测不同试件的杯锥形破坏特征。 相似文献
13.
Non-linear deformation paths obtained using uniaxial tension followed by simple shear tests were performed for a 1050-O aluminum alloy sheet sample in different specimen orientations with respect to the material symmetry axes. In order to eliminate the time influence, the time interval between the first and second loading steps was kept constant for all the tests. Monotonic uniaxial tension tests interrupted during loading were used to assess the recovery that takes place during this time. In order to eliminate the influence of the initial plastic anisotropy and to compare the results as if the material hardening was isotropic, the flow stress was represented as a function of the plastic work. The behavior of the material after reloading was analyzed in terms of dislocation microstructure and crystallographic texture evolutions. For more quantitative assessment, the full constraints [Int. J. Plasticity 13 (1997) 75] and visco-plastic self-consistent [Acta Metall. Mater. 41 (1993) 2611] polycrystal models were used to simulate the material behavior in the non-linear deformation paths. Based on experimental and simulation results, the relative contributions of the crystallographic texture and dislocation microstructure evolution to the anisotropic hardening behavior of the material were discussed. 相似文献
14.
In this study the concepts of engineering fracture mechanics are used to investigate the behavior of cohesive soil crumbling. Prior to the analysis, the physical structure was investigated using the electron scanning method. Cohesive soil-crushing tests were conducted to evaluate the fracture parameters. The results of both phenomenal and experimental approaches indicated that the concept of engineering fracture mechanics can be applied to evaluate soil fracture leading to crumbling. 相似文献
16.
The motion and localization of bubbles in a liquid subject to two-frequency excitation are studied. Plane and spherical waves are considered. Stationary solutions are obtained and the conditions of their stability are analyzed 相似文献
17.
We present a computational study on the effects of sample size on the strength and plastic flow characteristics of micropillars under compression loading. We conduct three-dimensional simulations using the parametric dislocation dynamics coupled with the boundary element method. Two different loading techniques are performed. The plastic flow characteristics as well as the stress-strain behavior of simulated micropillars are shown to be in general agreement with experimental observations. The flow strength versus the diameter of the micropillar follows a power law with an exponent equal to -0.69. A stronger correlation is observed between the flow strength and the average length of activated dislocation sources. This relationship is again a power law, with an exponent -0.85. Simulation results with and without the activation of cross-slip are compared. Discontinuous hardening is observed when cross-slip is included. Experimentally observed size effects on plastic flow and work-hardening are consistent with a “weakest-link activation mechanism”. 相似文献
18.
The coupled thermomechanical behavior of structurally inhomogeneous viscoplastic bodies under cyclic loading is investigated
by an example of the problem on harmonic bending and dissipative heat-up of a three-layer beam. Both the generalized thermomechanically
consistent flow theory (an exact formulation) and the scleronomic model (an approximated formulation) are used to solve the
problem. Aluminum alloy AMg-6 and steel 12KhN3A are chosen as the materials of the layers. The following two configurations
of the beam are considered: (i) the outer layers are aluminum and the inner layer is steel, and (ii) the outer layers are
steel and the inner layer is aluminum. The results obtained in solving the problem in the exact and approximate formulations
are compared for the amplitudes of the mechanical field characteristics, dissipated and accumulated energies, and the temperature
of dissipative heat-up. A good agreement between the results is pointed out. A comparative estimation of the absorption factor
of the beam for different arrangement of the layers is performed.
S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraines, Kiev. Translated from Prikladnaya Mekhanika,
Vol. 36, No. 2, pp. 135–143, February, 2000. 相似文献
20.
In this paper, we present an experimental study on plastic deformation and damage of polycrystalline pure HCP Ti, as well as modeling of the observed behavior. Mechanical characterization data were conducted, which indicate that the material is orthotropic and displays tension-compression asymmetry. The ex-situ and in-situ X-ray tomography measurements conducted reveal that damage distribution and evolution in this HCP Ti material is markedly different than in a typical FCC material such as copper. Stewart and Cazacu (2011) anisotropic elastic/plastic damage model is used to describe the behavior. All the parameters involved in this model have a clear physical significance, being related to plastic properties, and are determined from very few simple mechanical tests. It is shown that this model predicts correctly the anisotropy in plastic deformation, and its strong influence on damage distribution and damage accumulation. Specifically, for a smooth axisymmetric specimen subject to uniaxial tension, damage initiates at the center of the specimen, and is diffuse; the level of damage close to failure being very low. On the other hand, for a notched specimen subject to the same loading the model predicts that damage initiates at the outer surface of the specimen, and further grows from the outer surface to the center of the specimen, which corroborates with the in-situ tomography data. 相似文献
|