首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The time and depth of vertical one-dimensional projectile penetration into sandy media in the near shore region are derived. A precise definition for the physical properties and for the behavior of the sandy medium following the projectile impact are evaluated. Three separate time intervals following projectile impact are identified. During the first 3 ms of penetration, the deviatoric friction stress is shown to be negligible and the integrated Mie–Grüneisen equation of state (or, equivalently, the Hugoniot-adiabat) may be applied to compute the normal penetration resistance force from the sand pressure. In order to compute sand pressure as a function of the sand density D by the integrated Mie–Grüneisen equation of state, the Mie–Grüneisen dimensionless constants γ0 and s and the dimensional speed of sound C 0 in the sandy medium are required. In order to illustrate the one-dimensional shock wave propagation in both wet and dry sands, Hugoniot data for wet and dry silica sands are evaluated by a three degrees of freedom algorithm to compute these required constants. The numerical results demonstrate that the amplitude of the shock wave pressure in the wet silica sand (41% porosity) is approximately one-third of the shock wave pressure amplitudes in the dry silica sands (22% and 41% porosity). In addition, the shock wave pressure dampens quicker in the wet sand than in the dry sands.  相似文献   

2.
3.
以热力学原理和固态物质的三项式物态方程为基础,由密实物质的冲击绝热线和热力学状态,通 过等容线法推导出了疏松金属材料的冲击温度理论计算方法。以铁为例,分析了几种物理参数对该模型计算 结果的影响。计算和分析结果显示,利用新模型得到的计算结果与已有实验结果吻合较好,误差均在5%以 内。疏松金属材料的冲击温度受Grneisen系数、电子Grneisen系数影响不大,而密实度、冲击压力和电子 比热系数则会对疏松金属材料冲击温度产生较大影响。  相似文献   

4.
This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour that involves very high pressures and shockwaves in orthotropic materials using an anisotropic Hill’s yield criterion by means of the evolving structural tensors. The yield surface of this hyperelastic–plastic constitutive model is aligned uniquely within the principal stress space due to the combination of Mandel stress tensor and a new generalised orthotropic pressure. The formulation is developed in the isoclinic configuration and allows for a unique treatment for elastic and plastic orthotropy. An isotropic hardening is adopted to define the evolution of plastic orthotropy. The important feature of the proposed hyperelastic–plastic constitutive model is the introduction of anisotropic effect in the Mie–Gruneisen equation of state (EOS). The formulation is further combined with Grady spall failure model to predict spall failure in the materials. The proposed constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM’s version, named Material Type 92 (Mat92). The combination of the proposed stress tensor decomposition and the Mie–Gruneisen EOS requires some modifications in the code to reflect the formulation of the generalised orthotropic pressure. The validation approach is also presented in this paper for guidance purpose. The \({\varvec{\psi }}\) tensor used to define the alignment of the adopted yield surface is first validated. This is continued with an internal validation related to elastic isotropic, elastic orthotropic and elastic–plastic orthotropic of the proposed formulation before a comparison against range of plate impact test data at 234, 450 and \({\mathrm {895\,ms}}^{\mathrm {-1}}\) impact velocities is performed. A good agreement is obtained in each test.  相似文献   

5.
A new low-Reynolds-number kε turbulence model is developed for flows of viscoelastic fluids described by the finitely extensible nonlinear elastic rheological constitutive equation with Peterlin approximation (FENE-P model). The model is validated against direct numerical simulations in the low and intermediate drag reduction (DR) regimes (DR up to 50%). The results obtained represent an improvement over the low DR model of Pinho et al. (2008) [A low Reynolds number kε turbulence model for FENE-P viscoelastic fluids, Journal of Non-Newtonian Fluid Mechanics, 154, 89–108]. In extending the range of application to higher values of drag reduction, three main improvements were incorporated: a modified eddy viscosity closure, the inclusion of direct viscoelastic contributions into the transport equations for turbulent kinetic energy (k) and its dissipation rate, and a new closure for the cross-correlations between the fluctuating components of the polymer conformation and rate of strain tensors (NLTij). The NLTij appears in the Reynolds-averaged evolution equation for the conformation tensor (RACE), which is required to calculate the average polymer stress, and in the viscoelastic stress work in the transport equation of k. It is shown that the predictions of mean velocity, turbulent kinetic energy, its rate of dissipation by the Newtonian solvent, conformation tensor and polymer and Reynolds shear stresses are improved compared to those obtained from the earlier model.  相似文献   

6.
The aim of this work is to construct yield surfaces to describe initial yielding and characterize hardening behavior of a highly anisotropic material. A methodology for constructing yield surfaces for isotropic materials using axial–torsion loading is extended to highly anisotropic materials. The technique uses a sensitive definition of yielding based on permanent strain rather than offset strain, and enables multiple yield points and multiple yield surfaces to be conducted on a single specimen. A target value of 20 × 10−6 is used for Al2O3 fiber reinforced aluminum laminates having a fiber volume fraction of 0.55. Sixteen radial probes are used to define the yield locus in the axial–shear stress plane. Initial yield surfaces for [04], [904], and [0/90]2 fibrous aluminum laminates are well described by ellipses in the axial–shear stress plane having aspect ratios of 10, 2.5, and 3.3, respectively. For reference, the aspect ratio of the Mises ellipse for an isotropic material is 1.73. Initial yield surfaces do not have a tension–compression asymmetry. Four overload profiles (plus, ex, hourglass, and zee) are applied to characterize hardening of a [0/90]2 laminate by constructing 30 subsequent yield surfaces. Parameters to describe the center and axes of an ellipse are regressed to the yield points. The results clearly indicate that kinematic hardening dominates so that material state evolution can be described by tracking the center of the yield locus. For a nonproportional overload of (στ) = (500, 70) MPa, the center of the yield locus translated to (στ) = (430, 37) MPa and the ellipse major axis was only 110 MPa.  相似文献   

7.
An Eulerian formulation has been developed for the constitutive response of a group of materials that includes anisotropic elastic and viscoelastic solids and viscous fluids. The material is considered to be a composite of an elastic solid and a viscous fluid. Evolution equations are proposed for a triad of vectors m i that represent the stretches and orientations of material line elements in the solid component. Evolution equations for an orthonormal triad of vectors s i are also proposed to characterize anisotropy of the fluid component. In particular, for an elastic solid it is shown that the material response is totally characterized by the functional form of the strain energy and by the current values of m i , which are measurable in the current state of the material. Moreover, it is shown that the proposed Eulerian formulation removes unphysical arbitrariness of the choice of the reference configuration in the standard formulation of constitutive equations for anisotropic elastic solids.  相似文献   

8.
Plastic constitutive relations are derived for a class of anisotropic porous materials consisting of coaxial spheroidal voids, arbitrarily oriented relative to the embedding orthotropic matrix. The derivations are based on nonlinear homogenization, limit analysis and micromechanics. A variational principle is formulated for the yield criterion of the effective medium and specialized to a spheroidal representative volume element containing a confocal spheroidal void and subjected to uniform boundary deformation. To obtain closed form equations for the effective yield locus, approximations are introduced in the limit-analysis based on a restricted set of admissible microscopic velocity fields. Evolution laws are also derived for the microstructure, defined in terms of void volume fraction, aspect ratio and orientation, using material incompressibility and Eshelby-like concentration tensors. The new yield criterion is an extension of the well known isotropic Gurson model. It also extends previous analyses of uncoupled effects of void shape and material anisotropy on the effective plastic behavior of solids containing voids. Preliminary comparisons with finite element calculations of voided cells show that the model captures non-trivial effects of anisotropy heretofore not picked up by void growth models.  相似文献   

9.
In this paper we propose a formulation of polyconvex anisotropic hyperelasticity at finite strains. The main goal is the representation of the governing constitutive equations within the framework of the invariant theory which automatically fulfill the polyconvexity condition in the sense of Ball in order to guarantee the existence of minimizers. Based on the introduction of additional argument tensors, the so-called structural tensors, the free energies and the anisotropic stress response functions are represented by scalar-valued and tensor-valued isotropic tensor functions, respectively. In order to obtain various free energies to model specific problems which permit the matching of data stemming from experiments, we assume an additive structure. A variety of isotropic and anisotropic functions for transversely isotropic material behaviour are derived, where each individual term fulfills a priori the polyconvexity condition. The tensor generators for the stresses and moduli are evaluated in detail and some representative numerical examples are presented. Furthermore, we propose an extension to orthotropic symmetry.  相似文献   

10.
11.
The Stroh formalism for two-dimensional deformation of an anisotropic elastic material does not give the stress ij explicitly in a symmetric form. It does not give an explicit expression for the strain ij at al. Mantic and Paris [1] have recently derived an explicit symmetric representation of stress. We present here a new and elementary derivation that is more straight forward and transparent. The derivation does not require consideration of the surface traction or the normalization of the Stroh eigenvectors. The new derivation also provides an explicit symmetric representation of strain. Moreover, it allows us to deduce two of the three Barnett–Lothe tensors L, S [2] and the associated tensors L ( ), S ( ) [3], resulting in a physical interpretation of these tensors and the component ( L S )21.  相似文献   

12.
A theoretical framework is presented that has potential to cover a large range of strain gradient plasticity effects in isotropic materials. Both incremental plasticity and viscoplasticity models are presented. Many of the alternative models that have been presented in the literature are included as special cases. Based on the expression for plastic dissipation, it is in accordance with Gurtin (J. Mech. Phys. Solids 48 (2000) 989; Int. J. Plast. 19 (2003) 47) argued that the plastic flow direction is governed by a microstress qij and not the deviatoric Cauchy stress σij′ that has been assumed by many others. The structure of the governing equations is of second order in the displacements and the plastic strains which makes it comparatively easy to implement in a finite element programme. In addition, a framework for the formulation of consistent boundary conditions is presented. It is shown that there is a close connection between surface energy of an interface and boundary conditions in terms of plastic strains and moment stresses. This should make it possible to study boundary layer effects at the interface between grains or phases. Consistent boundary conditions for an expanding elastic-plastic boundary are as well formulated. As examples, biaxial tension of a thin film on a thick substrate, torsion of a thin wire and a spherical void under remote hydrostatic tension are investigated.  相似文献   

13.
The stability of steady, quasi-static slip at a planar interface between an anisotropic elastic solid and an isotropic elastic solid is studied. The paper begins with an analysis of anti-plane sliding at an orthotropic/isotropic interface. Friction at the interface is assumed to follow a rate- and state-dependent law. The stability to spatial perturbations of the form exp(ikx1), where k is the wavenumber and x1 is the coordinate along which the interface is studied. An expression is derived for the critical wavenumber ∣kcr above which there is stability. In-plane sliding at an anisotropic/isotropic interface is subsequently studied. In this case, slip couples with normal stress changes and a constitutive law for dynamic normal stress changes is adopted. Again a formula for ∣kcr is derived and the results are specialized to the case of an orthotropic/isotropic interface. Numerical plots of the dependence of ∣kcr on the orientation of the orthotropic solid, as well as on the material parameters are provided.  相似文献   

14.
Multiaxial creep and cyclic plasticity in nickel-base superalloy C263   总被引:1,自引:0,他引:1  
Physically-based constitutive equations for uniaxial creep deformation in nickel alloy C263 [Acta Mater. 50 (2002) 2917] have been generalised for multiaxial stress states using conventional von Mises type assumptions. A range of biaxial creep tests have been carried out on nickel alloy C263 in order to investigate the stress state sensitivity of creep damage evolution. The sensitivity has been quantified in C263 and embodied within the creep constitutive equations for this material. The equations have been implemented into finite element code. The resulting computed creep behaviour for a range of stress state compares well with experimental results. Creep tests have been carried out on double notched bar specimens over a range of nominal stress. The effect of the notches is to introduce multiaxial stress states local to the notches which influences creep damage evolution. Finite element models of the double notch bar specimens have been developed and used to test the ability of the model to predict correctly, or otherwise, the creep rupture lifetimes of components in which multiaxial stress states exist. Reasonable comparisons with experimental results are achieved. The γ solvus temperature of C263 is about 925 °C, so that thermo-mechanical fatigue (TMF) loading in which the temperature exceeds the solvus leads to the dissolution of the γ precipitate, and a resulting solution treated material. The cyclic plasticity and creep behaviour of the solution treated material is quite different to that of the material with standard heat treatment. A time-independent cyclic plasticity model with kinematic and isotropic hardening has been developed for solution treated and standard heat treated nickel-base superalloy C263. It has been combined with the physically-based creep model to provide constitutive equations for TMF in C263 over the temperature range 20–950 °C, capable of predicting deformation and life in creep cavitation-dominated TMF failure.  相似文献   

15.
The main goal of this work is to clarify the relation between two strategies to formulate constitutive equations for orthotropic materials at large strains. On the one hand, the classical approach is based on the incorporation of structural tensors into the free energy function via an enriched set of invariants. On the other hand, a fictitious isotropic configuration is introduced which renders an anisotropic, undeformed reference configuration via an appropriate linear tangent map. This formulation results in a reduced (with respect to the more general setting based on structural tensors) but nevertheless physically motivated set of invariants which are related to the invariants defined by structural tensors. As a main conceptual advantage standard isotropic constitutive equations can be applied and moreover, due to the reduced set of physically motivated invariants, the numerical treatment within a finite element setting becomes manageable.  相似文献   

16.
In this work a generalized anisotropic model in large strains based on the classical isotropic plasticity theory is presented. The anisotropic theory is based on the concept of mapped tensors from the anisotropic real space to the isotropic fictitious one. In classical orthotropy theories it is necessary to use a special constitutive law for each material. The proposed theory is a generalization of classical theories and allows the use of models and algorithms developed for isotropic materials. It is based on establishing a one-to-one relationship between the behavior of an anisotropic real material and that of an isotropic fictitious one. Therefore, the problem is solved in the isotropic fictious space and the results are transported to the real field. This theory is applied to simulate the behavior of each material in the composite. The whole behavior of the composite is modeled by incorporating the anisotropic model within a model based on a modified mixing theory.  相似文献   

17.
In this paper a constitutive model for rigid-plastic hardening materials based on the Hencky logarithmic strain tensor and its corotational rates is introduced. The distortional hardening is incorporated in the model using a distortional yield function. The flow rule of this model relates the corotational rate of the logarithmic strain to the difference of the Cauchy stress and the back stress tensors employing deformation-induced anisotropy tensor. Based on the Armstrong–Fredrick evolution equation the kinematic hardening constitutive equation of the proposed model expresses the corotational rate of the back stress tensor in terms of the same corotational rate of the logarithmic strain. Using logarithmic, Green–Naghdi and Jaumann corotational rates in the proposed constitutive model, the Cauchy and back stress tensors as well as subsequent yield surfaces are determined for rigid-plastic kinematic, isotropic and distortional hardening materials in the simple shear deformation. The ability of the model to properly represent the sign and magnitude of the normal stress in the simple shear deformation as well as the flattening of yield surface at the loading point and its orientation towards the loading direction are investigated. It is shown that among the different cases of using corotational rates and plastic deformation parameters in the constitutive equations, the results of the model based on the logarithmic rate and accumulated logarithmic strain are in good agreement with anticipated response of the simple shear deformation.  相似文献   

18.
S.B. Segletes 《Shock Waves》1998,8(6):361-366
Some thermodynamic relations are derived along the principal Hugoniot of materials for which the Grüneisen relation is a function of volume only. Rather than being expressed in terms of traditional thermodynamic variables, such as volume and temperature, the relations are expressed in terms of the shock-Hugoniot behavior and of a term grouping that is related to the Grüneisen function. By so doing, a new perspective is gained on the interrelation of thermodynamic quantities along the Hugoniot, which may be of use in developing analytical equations of state. Received 3 November 1997 / Accepted 30 April 1998  相似文献   

19.
The problem of determining minimal representations for anisotropic elastic constitutive equations is proposed and investigated. For elastic constitutive equations in any given case of anisotropy, it is shown that there exist generating sets consisting of six generators and such generating sets are minimal in all possible generating sets. This fact implies that most of the established results for representations of elastic constitutive equations are not minimal and remain to be sharpened. For elastic constitutive equations in some cases of anisotropy, including orthotropy, transverse isotropy, the trigonal crystal class S 6, and the classes C 2mh , m=1, 2, 3,..., etc., representations in terms of minimal generating sets are presented for the first time.  相似文献   

20.
This paper reports on the development of a new network alteration theory to describe the Mullins effect. The stress-softening phenomenon that occurs in rubber-like materials during cyclic loading is analysed from a physical point of view. The Mullins effect is considered to be a consequence of the breakage of links inside the material. Both filler-matrix and chain interaction links are involved in the phenomenon. This new alteration theory is implemented by modifying the eight-chains constitutive equation of Arruda and Boyce (J. Mech. Phys. Solids 41 (2) (1993) 389). In the present method the parameters of the eight-chains model, denoted CR and N in the bibliography, become functions of the maximum chain stretch ratio. The accuracy of the resulting constitutive equation is demonstrated on cyclic uniaxial experiments for both natural rubbers and synthetic elastomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号