首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In the framework of the effective mass approximation, the effects of hydrostatic pressure on optical transitions associated with the excitons confined in strained wurtzite (WZ) GaN/AlN quantum disks (QDisks) with the confinement potential of finite depth are investigated by using a variational technique, with considering the influences of the built-in electric field (BEF) and the biaxial strain dependence of material parameters. The Schrödinger equation via the proper choice of the exciton trial wave function is solved. The behaviors of the excitonic optical transition are examined at different pressures for different QDisk sizes. In our calculations, the effective masses of electron and hole, dielectric constants, phonon frequencies, energy gaps, and piezoelectric polarizations are taken into account as functions of biaxial strain and hydrostatic pressure. Numerical results show that the hydrostatic pressure and the QDisk size have a remarkable influence on exciton states. The calculated pressure coefficient of optical transition energy shows a negative value if the QDisk height L > 3.2 nm, in contrast with the positive pressure coefficient of the GaN band gap. The peculiar pressure behavior is related to the pressure-induced increase of the built-in electric field. For a fixed pressure, the optical transition energy has a red-shift if the QDisk height and radius increase and QDisk height has a more obvious influence on Eph than QDisk radius. Furthermore, the relationship between the radiative decay time and hydrostatic pressure (QDisk height) is also investigated. It is found that the radiative decay time increases with pressure and the increment tendency is more prominent for the large height QDisks. The radiative decay time strongly increases by three orders of magnitude reaching microsecond order if the QDisk height increases from 1 nm to 3 nm.  相似文献   

2.
Based on the effective-mass approximation and variational procedure, ionized donor bound exciton (D+, X) states confined in strained wurtzite (WZ) GaN/AlxGa1-xN cylindrical (disk-like) quantum dots (QDs) with finite-height potential barriers are investigated, with considering the influences of the built-in electric field (BEF), the biaxial strain dependence of material parameters and the applied hydrostatic pressure. The Schrödinger equation via the proper choice of the donor bound exciton trial wave function is solved. The behaviors of the binding energy of (D+, X) and the optical transition associated with (D+, X) are examined at different pressures for different QD sizes and donor positions. In our calculations, the effective masses of electron and hole, dielectric constants, phonon frequencies, energy gaps, and piezoelectric polarizations are taken into account as functions of biaxial strain and hydrostatic pressure. Our results show that the hydrostatic pressure, the QD size and the donor position have a remarkable influence on (D+, X) states. The hydrostatic pressure generally increases the binding energy of (D+, X). However, the binding energy tends to decrease for the QDs with large height and lower Al composition (x<0.3) if the donor is located at z0≤0. The optical transition energy has a blue-shift (red-shift) if the hydrostatic pressure (QD height) increases. For the QDs with small height and low Al composition, the hydrostatic pressure dependence of the optical transition energy is more obvious. Furthermore, the relationship between the radiative decay time and hydrostatic pressure (QD height) is also investigated. It is found that the radiative decay time increases with pressure and the increment tendency is more prominent for the QDs with large height. The radiative decay time increases exponentially reaching microsecond order with increasing QD height. The physical reason has been analyzed in depth.  相似文献   

3.
郑冬梅  王宗篪 《光子学报》2012,41(4):485-492
在有效质量近似下,考虑强的内建电场和应变对材料参量的影响,变分研究了流体静压力对有限高势垒应变纤锌矿GaN/Al0.15Ga0.85N柱形量子点中重空穴激子的结合能、发光波长和电子空穴复合率的影响.数值结果表明,激子结合能和电子空穴复合率随流体静压力的增大而近线性增大,发光波长随流体静压力的增大而单调减小.在量子点尺寸较小的情况下,流体静压力对激子结合能和电子空穴复合率的影响更明显.由于应变效应,为了获得有效的电子-空穴复合过程,GaN量子点的高度必须小于5.5 nm.  相似文献   

4.
在有效质量近似下,考虑强的内建电场和应变对材料参量的影响,变分研究了流体静压力对有限高势垒应变纤锌矿GaN/Al0.15Ga0.85N柱形量子点中重空穴激子的结合能、发光波长和电子空穴复合率的影响.数值结果表明,激子结合能和电子空穴复合率随流体静压力的增大而近线性增大,发光波长随流体静压力的增大而单调减小.在量子点尺寸较小的情况下,流体静压力对激子结合能和电子空穴复合率的影响更明显.由于应变效应,为了获得有效的电子-空穴复合过程,GaN量子点的高度必须小于5.5 nm.  相似文献   

5.
The combined effects of an in-growth direction applied electric field and hydrostatic pressure on the exciton binding energy and photoluminescence energy transitions are reported in this work for triple vertically coupled quantum dots. The calculations have been carried out within the effective mass approximation, and using a variational procedure. The results show that the exciton binding energy and the photoluminescence energy transitions are functions of external probes like the hydrostatic pressure and the applied electric field.  相似文献   

6.
In the framework of perturbation theory, a variational method is used to study the ground state of a donor bound exciton in a weakly prolate GaAs/Ga1−xAlxAs ellipsoidal finite-potential quantum dot under hydrostatic pressure. The analytic expressions for the Hamiltonian of the system have been obtained and the binding energy of the bound exciton is calculated. The results show that the binding energy decreases as the symmetry of the dot shape reduces. The pressure and Al concentration have a considerable influence on the bound exciton. The binding energy increases monotonically as the pressure or Al concentration increases, and the influence of pressure or Al concentration is more pronounced for small quantum dot size.  相似文献   

7.
Binding energies of intrawell and interwell excitons are investigated in a GaAs/GaAlAs double quantum well system in the presence of hydrostatic pressure applied in the z-direction. Calculations have been carried out with the variational technique within the single band effective mass approximations using a two parametric trial wave function. The interband emission energy as a function of well width is calculated in the influence of pressure. The pressure dependent photoionization cross section for a charged exciton placed at the center of the quantum well is computed as a function of normalized photon energy. The dependence of the photoionization cross section on photon energy is carried out for the charged excitons. The resulting spectra are brought out for light polarized along and perpendicular to the growth direction. The results show that the charged exciton binding energy, interband emission energy and the photoionization cross section depend strongly on the well width and the hydrostatic pressure. Our results are compared with the other existing literature available.  相似文献   

8.
The effects of hydrostatic pressure on the Coulomb-bound states in GaAs–Ga1−xAlxAs and GaAs–AlAs semiconductor superlattices are theoretically studied. Calculations of the impurity binding energies for different configurations of the system and for various values of the hydrostatic pressure are performed in the framework of the parabolic-band and effective-mass schemes, and within the variational procedure. The hydrostatic-pressure dependence on the exciton energy is also obtained, and theoretical results are compared and found in good agreement with available experimental measurements.  相似文献   

9.
静压下Znse/Zn_(1-x)Cd_xSe应变超晶格的光致发光研究   总被引:2,自引:2,他引:0  
本文首次在室温和0—2.5GPa静压范围内研究了Znse/Zn0.26Cd0.26Se应变超晶格的静压光致发光,观察到了室温条件下的超晶格阱层的重空穴激子跃迁随压力的亚线性变化的特性.经过计算机拟合实验数据得到了一阶和二阶压力系数.理论计算得到的一阶压力系数与实验得到的压力系数符合得较好。  相似文献   

10.
Within the framework of effective-mass approximation, the hydrostatic pressure effects on the donor binding energy of a hydrogenic impurity in InAs/GaAs self-assembled quantum dot(QD) are investigated by means of a variational method. Numerical results show that the donor binding energy increases when the hydrostatic pressure increases for any impurity position and QD size. Moreover, the hydrostatic pressure has a remarkable influence on the donor binding energy for small QD. Realistic cases, including the impurity in the QD and the surrounding barrier, are considered.  相似文献   

11.
Considering the strong built-in electric field (BEF) effects and large exciton–phonon interactions, we investigate the exciton states confined in an InGaN/GaN single quantum well (QW) by using the Lee–Low–Pines variational method. We find that the exciton state modification caused by the exciton–phonon interactions is remarkable. The exciton energy shift due to exciton–phonon interactions increases monotonically if the well width increases. With increasing the In fraction, the exciton energy shift firstly increases to a maximum, then decreases. The BEF has a significant influence on the exciton states in a QW with large well width. The physical reasons have been analyzed in detail. Good agreement for the zero-phonon peak energies and the Huang–Rhys factor has been obtained between our numerical results and the corresponding experimental measurements.  相似文献   

12.
李文深  池元斌 《发光学报》1995,16(3):232-237
本文首次在室温和0-2.5GPa静压范围内研究了Znse/Zn0.74Cd0.26Se应变超晶格的静压光致发光,观察到了室温条件下的超晶格阱层的重空穴激子跃迁随压力的亚线性变化的特性.经过计算机拟合实验数据得到了一阶和二阶压力系数.理论计算得到的一阶压力系数与实验得到的压力系数符合得较好.  相似文献   

13.
Based on the effective-mass approximation, the hydrostatic pressure effects on the donor binding energy of the hydrogenic impurity in zinc-blende (ZB) InGaN/GaN quantum dot (QD) are investigated by means of a variational procedure. Numerical results show that the donor binding energy increases when the hydrostatic pressure increases for any impurity position and QD structure parameter. Moreover, it is found that the hydrostatic pressure has a remarkable influence on the donor binding energy of the hydrogenic impurity located at the vicinity of dot center in ZB InGaN/GaN QD.  相似文献   

14.
Abstract

Employing resonant Raman and luminescence spectroscopy, various exciton states and phonon modes are studied at low temperature in AgBr under hydrostatic pressure up to 0.7 GPa. The deformation potential for the indirect free exciton gap and mode Grüneisen parameters for various phonons are determined. Excitons bound to neutral donors and isoelectronic iodine are found to essentially derive from L-point valence band states.  相似文献   

15.
We calculate the exciton binding energy and interband optical absorption in a rectangular coupled quantum wire under the hydrostatic pressure in the effective-mass approximation, using the variational approach. It is found that the interband optical absorption strongly depend on the hydrostatic pressure and the coupling parameter, and that the magnitude of the absorption coefficient for the HH1-E1 transition in the coupled quantum wire is larger than that of the single quantum wire.  相似文献   

16.
本文将基于有效质量近似下的变分法,理论研究了纤锌矿InGaN/GaN staggered量子阱中的激子态和光学性质.数值结果显示了InGaN量子阱中的量子尺寸和staggered受限垒对束缚于量子阱中的激子态和光学性质有着明显的影响.当阱宽增加时,量子受限效应减弱,激子结合能降低,带间发光波长增加.另一方面,当量子阱中staggered受限势增加时,量子受限效应增强,激子结合能升高,带间发光波长降低.本文的理论结果证明了可以通过调节staggered垒高和量子尺寸来调控纤锌矿InGaN staggered量子阱中的激子态和光学性质.  相似文献   

17.
This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. Calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a non-linear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum-well wires.  相似文献   

18.
本文将基于有效质量近似下的变分法,理论研究了纤锌矿InGaN/GaN staggered 量子阱中的激子态和光学性质。数值结果显示了InGaN量子阱中的量子尺寸和staggered受限垒对束缚于量子阱中的激子态和光学性质有着明显地影响。当阱宽增加时,量子受限效应减弱,激子结合能降低, 带间发光波长增加。另一方面,当量子阱中staggered受限势增加时,量子受限效应增强,激子结合能升高,带间发光波长降低。本文的理论结果证明了可以通过调节staggered垒高和量子尺寸来调控纤锌矿InGaN staggered 量子阱中的激子态和光学性质。  相似文献   

19.
A variational theory is proposed to study the electronic surface states in semi-infinite wurtzite nitride semiconductors under the hydrostatic pressure. The electronic surface state energy level is calculated, by taking the effects of the electron–Surface–Optical–phonon interaction, structural anisotropy and the hydrostatic pressure into account. The numerical computation has been performed for the electronic surface state energy levels, coupling constants and the average penetrating depths of the electronic surface state wave functions under the hydrostatic pressure for wurtzite GaN, AlN and InN, respectively. The results show that electron–Surface–Optical–phonon interaction lowers the electronic surface state energy levels. It is also found that the electronic surface state energy levels decrease with the hydrostatic pressure in wurtzite GaN and AlN. But for wurtzite InN, the case is contrary. It is shown that the hydrostatic pressure raised the influence of electron–phonon interaction on the electronic surface states obviously. The effect of electron–Surface–Optical–phonon interaction under the hydrostatic pressure on the electronic surface states cannot be neglected, in specially, for materials with strong electron–phonon coupling and wide band gap.  相似文献   

20.
This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a nonlinear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum well wires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号