首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this paper an anisotropic material model based on non-associated flow rule and mixed isotropic–kinematic hardening was developed and implemented into a user-defined material (UMAT) subroutine for the commercial finite element code ABAQUS. Both yield function and plastic potential were defined in the form of Hill’s [Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A 193, 281–297] quadratic anisotropic function, where the coefficients for the yield function were determined from the yield stresses in different material orientations, and those of the plastic potential were determined from the r-values in different directions. Isotropic hardening follows a nonlinear behavior, generally in the power law form for most grades of steel and the exponential law form for aluminum alloys. Also, a kinematic hardening law was implemented to account for cyclic loading effects. The evolution of the backstress tensor was modeled based on the nonlinear kinematic hardening theory (Armstrong–Frederick formulation). Computational plasticity equations were then formulated by using a return-mapping algorithm to integrate the stress over each time increment. Either explicit or implicit time integration schemes can be used for this model. Finally, the implemented material model was utilized to simulate two sheet metal forming processes: the cup drawing of AA2090-T3, and the springback of the channel drawing of two sheet materials (DP600 and AA6022-T43). Experimental cyclic shear tests were carried out in order to determine the cyclic stress–strain behavior and the Bauschinger ratio. The in-plane anisotropy (r-value and yield stress directionalities) of these sheet materials was also compared with the results of numerical simulations using the non-associated model. These results showed that this non-associated, mixed hardening model significantly improves the prediction of earing in the cup drawing process and the prediction of springback in the sidewall of drawn channel sections, even when a simple quadratic constitutive model is used.  相似文献   

2.
In this paper, a generalized anisotropic hardening rule based on the Mroz multi-yield-surface model for pressure insensitive and sensitive materials is derived. The evolution equation for the active yield surface with reference to the memory yield surface is obtained by considering the continuous expansion of the active yield surface during the unloading/reloading process. The incremental constitutive relation based on the associated flow rule is then derived for a general yield function for pressure insensitive and sensitive materials. Detailed incremental constitutive relations for materials based on the Mises yield function, the Hill quadratic anisotropic yield function and the Drucker–Prager yield function are derived as the special cases. The closed-form solutions for one-dimensional stress–plastic strain curves are also derived and plotted for materials under cyclic loading conditions based on the three yield functions. In addition, the closed-form solutions for one-dimensional stress–plastic strain curves for materials based on the isotropic Cazacu–Barlat yield function under cyclic loading conditions are summarized and presented. For materials based on the Mises and the Hill anisotropic yield functions, the stress–plastic strain curves show closed hysteresis loops under uniaxial cyclic loading conditions and the Masing hypothesis is applicable. For materials based on the Drucker–Prager and Cazacu–Barlat yield functions, the stress–plastic strain curves do not close and show the ratcheting effect under uniaxial cyclic loading conditions. The ratcheting effect is due to different strain ranges for a given stress range for the unloading and reloading processes. With these closed-form solutions, the important effects of the yield surface geometry on the cyclic plastic behavior due to the pressure-sensitive yielding or the unsymmetric behavior in tension and compression can be shown unambiguously. The closed form solutions for the Drucker–Prager and Cazacu–Barlat yield functions with the associated flow rule also suggest that a more general anisotropic hardening theory needs to be developed to address the ratcheting effects for a given stress range.  相似文献   

3.
The main objective of this paper is to develop a generalized finite element formulation of stress integration method for non-quadratic yield functions and potentials with mixed nonlinear hardening under non-associated flow rule. Different approaches to analyze the anisotropic behavior of sheet materials were compared in this paper. The first model was based on a non-associated formulation with both quadratic yield and potential functions in the form of Hill’s (1948). The anisotropy coefficients in the yield and potential functions were determined from the yield stresses and r-values in different orientations, respectively. The second model was an associated non-quadratic model (Yld2000-2d) proposed by Barlat et al. (2003). The anisotropy in this model was introduced by using two linear transformations on the stress tensor. The third model was a non-quadratic non-associated model in which the yield function was defined based on Yld91 proposed by Barlat et al. (1991) and the potential function was defined based on Yld89 proposed by Barlat and Lian (1989). Anisotropy coefficients of Yld91 and Yld89 functions were determined by yield stresses and r-values, respectively. The formulations for the three models were derived for the mixed isotropic-nonlinear kinematic hardening framework that is more suitable for cyclic loadings (though it can easily be derived for pure isotropic hardening). After developing a general non-associated mixed hardening numerical stress integration algorithm based on backward-Euler method, all models were implemented in the commercial finite element code ABAQUS as user-defined material subroutines. Different sheet metal forming simulations were performed with these anisotropic models: cup drawing processes and springback of channel draw processes with different drawbead penetrations. The earing profiles and the springback results obtained from simulations with the three different models were compared with experimental results, while the computational costs were compared. Also, in-plane cyclic tension–compression tests for the extraction of the mixed hardening parameters used in the springback simulations were performed for two sheet materials.  相似文献   

4.
The bi-axial experimental equipment [Flores, P., Rondia, E., Habraken, A.M., 2005a. Development of an experimental equipment for the identification of constitutive laws (Special Issue). International Journal of Forming Processes] developed by Flores enables to perform Bauschinger shear tests and successive or simultaneous simple shear tests and plane strain tests. Flores investigates the material behavior with the help of classical tensile tests and the ones performed in his bi-axial machine in order to identify the yield locus and the hardening model. With tests performed on one steel grade, the methods applied to identify classical yield surfaces such as [Hill, R., 1948. A theory of the yielding and plastic flow of anisotropic materials. Proceedings of the Royal Society of London A 193, 281–297; Hosford, W.F., 1979. On yield loci of anisotropic cubic metals. In: Proceedings of the 7th North American Metalworking Conf. (NMRC), SME, Dearborn, MI, pp. 191–197] ones as well as isotropic Swift type hardening, kinematic Armstrong–Frederick or Teodosiu and Hu hardening models are explained. Comparison with the Taylor–Bishop–Hill yield locus is also provided. The effect of both yield locus and hardening model choices is presented for two applications: plane strain tensile test and Single Point Incremental Forming (SPIF).  相似文献   

5.
The initial and subsequent yield surfaces for an anisotropic and pressure-dependent 2D stochastic cellular material, which represents solid foams, are investigated under biaxial loading using finite element analysis. Scalar measures of stress and strain, namely characteristic stress and characteristic strain, are used to describe the constitutive response of cellular material along various stress paths. The coupling between loading path and strain hardening is then investigated in characteristic stress–strain domain. The nature of the flow rule that best describes the plastic flow of cellular solid is also investigated. An incremental plasticity framework is proposed to describe the pressure-dependent plastic flow of 2D stochastic cellular solids. The proposed plasticity framework adopts the anisotropic and pressure-dependent yield function recently introduced by Alkhader and Vural [Alkhader M., Vural M., 2009a. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations. J. Mech. Phys. Solids 57(5), 871–890]. It has been shown that the proposed yield function can be simply calibrated using elastic constants and flow stresses under uniaixal loading. Comparison of stress fields predicted by continuum plasticity model to the ones obtained from FE analysis shows good agreement for the range of loading paths and strains investigated.  相似文献   

6.
The forming limit diagram (FLD) is a useful concept for characterizing the formability of sheet metal. The ability to accurately predict the FLD for a given material has been shown to depend on the shape of the selected yield function. In addition, both experimental and numerical results have shown that the level of the FLD is strongly strain path dependent. In this work, a combination of Marciniak–Kuczynski (M–K) analysis and a general anisotropic yield criterion developed by Karafillis and Boyce (Karafillis, A.P., Boyce, M.C., 1993. A general anisotropic yield criterion using bounds and transformation weighting tensor. J. Mech. Phys. Solids 41, 1859) is used to predict localized thinning of sheet metal alloys for linear and nonlinear strain paths. A new method for determining the constants in the yield criterion is proposed. The optimal values are obtained by fitting the initial yield stresses and calculated FLD under linear strain paths with the experimental measurement. Using this approach, accurate yield functions can be defined for both Al2008-T4 and Al6111-T4. Comparisons of computed FLDs with the experimental data of Graf and Hosford (Graf, A., Hosford, W.F., 1993b. Effect of changing strain paths on forming limit diagrams of Al 2008-T4. Metall. Trans. A. 24, 2503; Graf, A., Hosford, W.F., 1994. The influence of strain path changes on forming limit diagrams of Al 6111-T4. Int. J. Mech. Sci. 36, 897) show good agreements.  相似文献   

7.
8.
In this article a stress integration algorithm for shell problems with planar anisotropic yield functions is derived. The evolution of the anisotropy directions is determined on the basis of the plastic and material spin. It is assumed that the strains inducing the anisotropy of the pre-existing preferred orientation are much larger than subsequent strains due to further deformations. The change of the locally preferred orientations to each other during further deformations is considered to be neglectable. Sheet forming processes are typical applications for such material assumptions. Thus the shape of the yield function remains unchanged. The size of the yield locus and its orientation is described with isotropic hardening and plastic and material spin.The numerical treatment is derived from the multiplicative decomposition of the deformation gradient and thermodynamic considerations in the intermediate configuration. A common formulation of the plastic spin completes the governing equations in the intermediate configuration. These equations are then pushed forward into the current configuration and the elastic deformation is restricted to small strains to obtain a simple set of constitutive equations. Based on these equations the algorithmic treatment is derived for planar anisotropic shell formulations incorporating large rotations and finite strains. The numerical approach is completed by generalizing the Return Mapping algorithm to problems with plastic spin applying Hill’s anisotropic yield function. Results of numerical simulations are presented to assess the proposed approach and the significance of the plastic spin in the deformation process.  相似文献   

9.
An improved model of material behavior is proposed that shows good agreement with experimental data for both yield and plastic strain ratios in uniaxial, equi-biaxial, and plane-strain tension under proportional loading for steel, aluminum and possibly other alloys. This model is based on a non-associated flow rule in which the plastic potential and yield surface functions are defined by quadratic functions of the stress tensor. The plastic potential aspect of the model is identical to that proposed by Hill for a quadratic anisotropic plastic potential defined in terms of measured r values. The new model differs in that the yield surface, although also defined by a quadratic function of the stress tensor, is defined independently of the plastic potential in terms of measured yield stresses. The model is developed and implemented in an FEM code that is based on a convected coordinate system. Since the associated flow rule, which assumes equivalency between the plastic potential and yield functions, is commonly accepted as a valid law in the theory of plastic deformation of most metals, the arguments for the associated flow rule are also discussed.  相似文献   

10.
This paper describes a combined fracture–plastic model for concrete. Tension is handled by a fracture model, based on the classical orthotropic smeared crack formulation and the crack band approach. It employs the Rankine failure criterion, exponential softening, and it can be used as a rotated or a fixed crack model. The plasticity model for concrete in compression is based on the Menétrey–Willam failure surface, the plastic volumetric strain as a hardening/softening parameter and a non-associated flow rule based on a nonlinear plastic potential function. Both models use a return-mapping algorithm for the integration of constitutive equations. Special attention is given to the development of an algorithm for the combination of the two models. The suggested combination algorithm is based on a recursive substitution, and it allows for the two models to be developed and formulated separately. The algorithm can handle cases when failure surfaces of both models are active, but also when physical changes such as crack closure occur. The model can be used to simulate concrete cracking, crushing under high confinement and crack closure due to crushing in other material directions. The model is integrated in a general finite element package ATENA and its performance is evaluated by comparisons with various experimental results from the literature.  相似文献   

11.
In the present paper the diffuse and localized necking models according to Swift [Swift, H.W., 1952. Plastic instability under plane stress, Journal of the Mechanics and Physics of Solids, 11–18], Hill [Hill, R., 1952. On discontinuous plastic states, with special reference to localized necking in thin sheets. Journal of the Mechanics and Physics of Solids 1, 19–30] and Marciniak and Kuczyński [Marciniak, Z., Kuczyński, K., 1967. Limit strains in the process of stretch-forming sheet metal. International Journal of Mechanical Sciences 9, 609–620], respectively, are considered. A theoretical framework for the mentioned models is proposed that covers rigid–plastic as well as elastic–plastic constitutive modelling using various advanced phenomenological yield functions that are able to account very accurately for plastic anisotropy. The mentioned necking models are applied to different orthotropic sheet metals in order to assess their predictive capabilities and to stress out some potential sources for discrepancies between simulations and experiments. In particular, the impact of the applied hardening curve and the equibiaxial r-value, which was recently introduced by Barlat [Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Choi, S.-H., Pourboghrat, F., Chu, E., Lege, D.J., 2003. Plane stress yield function for aluminium alloy sheets – part 1: theory. International Journal of Plasticity 19, 297–1319], on formability prediction is investigated. Furthermore, the impact of the Portevin–LeChatelier effect on the formability of aluminum sheet metals is discussed.  相似文献   

12.
Four calibration methods have been evaluated for the linear transformation-based anisotropic yield function YLD2004-18p (Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., Dick, R.E., 2005. Linear transformation-based anisotropic yield functions. Int. J. Plasticity 21, 1009–1039) and the aluminium alloy AA5083-H116. The different parameter identifications are based on least squares fits to combinations of uniaxial tensile tests in seven directions with respect to the rolling direction, compression (upsetting) tests in the normal direction and stress states found using the full-constraint (FC) Taylor model for 690 evenly distributed strain paths. An elastic–plastic constitutive model based on YLD2004-18p has been implemented in a non-linear finite element code and used in finite element simulations of plane-strain tension tests, shear tests and upsetting tests. The experimental results as well as the Taylor model predictions can be satisfactorily reproduced by the considered yield function. However, the lacking ability of the Taylor model to quantitatively reproduce the experiments calls for more advanced crystal plasticity models.  相似文献   

13.
The Forming Limit Diagram (FLD), a plot of the maximum major principal strains that can be sustained by sheet materials prior to the onset of localized necking, is a useful concept for characterizing the formability of sheet metal. Both experimental and numerical results in the literature have shown that the level of the FLD is strongly strain path dependent and the prediction of FLD depends on the shape of the initial yield function and its evolution. In this work, to improve the accuracy of FLD prediction under nonlinear strain paths for a given material, the evolution of the yield function is proposed in terms of the changes of its center and its curvature. The center of the subsequent yield surface after preloading and unloading will be determined via a backstress tensor, and the curvature change will be reflected by changing the exponent in the yield function. Both parameters are functions of the effective plastic strain and will be determined using the forming limit strains obtained from two nonlinear tests. Using this approach, a combination of Marciniak–Kuczynski (M–K) analysis (Marciniak, Z., Kuczynski, K. 1967. Limit strains in the processes of stretch-forming sheet metal. Int. J. Mech. Sci. 9, 609.) and a general anisotropic yield criterion developed by Karafillis and Boyce (Karafillis, A.P., Boyce, M.C. 1993. A general anisotropic yield criterion using bounds and transformation weighting tensor, J. Mech. Phys. Solids, 41, 1859) is used to predict nonlinear FLDs of both Al2008-T4 and Al6111-T4. Excellent agreements were obtained between computed FLDs with the experimental data of Graf and Hosford (Graf, A., Hosford, W.F. 1993a. Calculations of forming limit diagrams for changing strain paths. Metall. Trans. A. 24, 2497; Graf, A., Hosford, W.F. 1993b. Effect of changing strain paths on forming limit diagrams of Al 2008-T4. Metall. Trans. A. 24, 2503; Graf, A., Hosford, W.F. 1994. The influence of strain path changes on forming limit diagrams of Al 6111-T4. Int. J. Mech. Sci. 36, 897). This prediction capability provides a powerful tool in the design and optimization process of 3D sheet metal forming where strain path changes are inevitable.  相似文献   

14.
This work is a follow-up of the previous report by Kim and Yin [Kim, K.H., Yin, J.J., 1997. Evolution of anisotropy under plane stress. J. Mech. Phys. Solids 45, 841–851] regarding the anisotropic work hardening of cold rolled steel sheets. Tensile prestrain has been applied at angles to the rolling direction and then tensile uniaxial yield stress and R-value distributions are measured. As reported earlier, the orientations of local maxima and minima in the yield stress are altered when the prestrain axis is not in the rolling direction. This led Kim and Yin [Kim and Yin (1997)] to suggest that the orientations of orthotropy axes are altered by the tensile prestrain at angles to the rolling direction. However, R-value distribution is found to be hardly affected by the prestrain. The unchanging R-value distribution shows that the material remembers the rolling direction even after the prestrain. An attempt is made to approximate the observed yield and flow behavior based upon isotropic-kinematic hardening with the quadratic yield function (Hill, 1948). The degree of approximation raises the issues of yield point definition, flexibility of yield function, non-associated flow rules, distortional hardening and others.  相似文献   

15.
针对准脆性材料的非线性特征:强度软化和刚度退化、单边效应、侧限强化和拉压软化、不可恢复变形、剪胀及非弹性体胀,在热动力学框架内,建立了准脆性材料的弹塑性与各向异性损伤耦合的本构关系。对准脆性材料的变形机理和损伤诱发的各向异性进行了诠释,并给出了损伤构形和有效构形中各物理量之间的关系。在有效应力空间内,建立了塑性屈服准则、拉压不同的塑性随动强化法则和各向同性强化法则。在损伤构形中,采用应变能释放率,建立了拉压损伤准则、拉压不同的损伤随动强化法则和各向同性强化法则。基于塑性屈服准则和损伤准则,构建了塑性势泛函和损伤势泛函,并由正交性法则,给出了塑性和损伤强化效应内变量的演化规律,同时,联立塑性屈服面和损伤加载面,给出了塑性流动和损伤演化内变量的演化法则。将损伤力学和塑性力学结合起来,建立了应变驱动的应力-应变增量本构关系,给出了本构数值积分的要点。以单轴加载-卸载往复试验识别和校准了本构材料常数,并对单轴单调试验、单轴加载-卸载往复试验、二轴受压、二轴拉压试验和三轴受压试验进行了预测,并与试验结果作了比较,结果表明,所建本构模型对准脆性材料的非线性材料性能有良好的预测能力。  相似文献   

16.
This paper investigates the capabilities of several non-quadratic polynomial yield functions to model the plastic anisotropy of orthotropic sheet metal (plane stress). Fourth, sixth and eighth-order homogeneous polynomials are considered. For the computation of the coefficients of the fourth-order polynomial an improved set of analytic formulas is proposed. For sixth and eighth-order polynomials the identification uses optimization. Simple constraints on the optimization process are shown to lead to real-valued convex functions. A general method to extend the above plane stress criteria to full 3D stress states is also suggested. Besides their simplicity in formulation, it is found that polynomial yield functions are capable to model a wide range of anisotropic plastic properties (e.g., the Numisheet’93 mild steel, AA2008-T4, AA2090-T3). The yield functions have then been implemented into a commercial finite element code as constitutive subroutines. The deep drawing of square (Numisheet’93) and cylindrical (AA2090-T3) cups have been simulated. In both cases excellent agreement with experimental data is obtained. In particular, it is shown that non-quadratic polynomial yield functions can simulate cylindrical cups with six or eight ears. We close with a discussion on earing and further examples.  相似文献   

17.
王海波  周伟  阎昱  李强  何东 《力学学报》2018,50(5):1051-1062
屈服准则对板料成形过程的理论解析、工艺优化和有限元模拟有着重要的影响. 通过提高屈服准则的各向异性表征能力, 可以确保成形过程的可靠性及实际预测的准确性. 本文基于非关联流动法则, 给出了Gotoh屈服准则一套全新的参数求解方法. 在结合常用屈服准则并考虑流动规律的基础上, 分别以5754O铝合金、DP980先进高强钢和SAPH440结构钢作为研究对象, 进行了不同加载路径下各向异性变形行为的预测. 根据Gotoh屈服准则推导的屈服函数、塑性势函数以及基于关联流动的理论函数计算出屈服应力和各向异性指数$r$值随加载角度的分布趋势, 进而针对平面应力状态的屈服轨迹展开分析, 验证了不同屈服准则和流动规律对各向异性屈服行为的预测精度. 理论与实验数据对比结果表明: 不同屈服准则针对同种板料在流动规律一致的情形下其表征各向异性的能力有显著差异; 相同屈服准则基于不同流动规律其表征能力也具有明显差别. 基于非关联流动的屈服准则能极大地提高精度, 各向异性表征能力显著加强. 相关结果能够为各向异性屈服准则在塑性成形领域的实际应用方案提供重要参考.   相似文献   

18.
This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour that involves very high pressures and shockwaves in orthotropic materials using an anisotropic Hill’s yield criterion by means of the evolving structural tensors. The yield surface of this hyperelastic–plastic constitutive model is aligned uniquely within the principal stress space due to the combination of Mandel stress tensor and a new generalised orthotropic pressure. The formulation is developed in the isoclinic configuration and allows for a unique treatment for elastic and plastic orthotropy. An isotropic hardening is adopted to define the evolution of plastic orthotropy. The important feature of the proposed hyperelastic–plastic constitutive model is the introduction of anisotropic effect in the Mie–Gruneisen equation of state (EOS). The formulation is further combined with Grady spall failure model to predict spall failure in the materials. The proposed constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM’s version, named Material Type 92 (Mat92). The combination of the proposed stress tensor decomposition and the Mie–Gruneisen EOS requires some modifications in the code to reflect the formulation of the generalised orthotropic pressure. The validation approach is also presented in this paper for guidance purpose. The \({\varvec{\psi }}\) tensor used to define the alignment of the adopted yield surface is first validated. This is continued with an internal validation related to elastic isotropic, elastic orthotropic and elastic–plastic orthotropic of the proposed formulation before a comparison against range of plate impact test data at 234, 450 and \({\mathrm {895\,ms}}^{\mathrm {-1}}\) impact velocities is performed. A good agreement is obtained in each test.  相似文献   

19.
The combined effects of void shape and matrix anisotropy on the macroscopic response of ductile porous solids is investigated. The Gologanu–Leblond–Devaux’s (GLD) analysis of an rigid-ideal plastic (von Mises) spheroidal volume containing a confocal spheroidal cavity loaded axisymmetrically is extended to the case when the matrix is anisotropic (obeying Hill’s [Hill, R., 1948. A theory of yielding and plastic flow of anisotropic solids. Proc. Roy. Soc. London A 193, 281–297] anisotropic yield criterion) and the representative volume element is subjected to arbitrary deformation. To derive the overall anisotropic yield criterion, a limit analysis approach is used. Conditions of homogeneous boundary strain rate are imposed on every ellipsoidal confocal with the cavity. A two-field trial velocity satisfying these boundary conditions are considered. It is shown that for cylindrical and spherical void geometries, the proposed criterion reduces to existing anisotropic Gurson-like yield criteria. Furthermore, it is shown that for the case when the matrix is considered isotropic, the new results provide a rigorous generalization to the GLD model. Finally, the accuracy of the proposed approximate yield criterion for plastic anisotropic media containing non-spherical voids is assessed through comparison with numerical results.  相似文献   

20.
The Burzynski criterion is developed for anisotropic asymmetric metals with the non-associated flow rule (NAFR) for plane stress problems. The presented pressure depending on the yield criterion can be calibrated with ten experimental data, i.e., the tensile yield stresses at 0°, 45°, and 90°, the compressive yield stresses at 0°, 15°, 30°, 45°, 75°, and 90° from the rolling direction, and the biaxial tensile yield stress. The corresponding pressure independent plastic potential function can be calibrated with six experimental data, i.e., the tensile R-values at 0°, 15°, 45°, 75°, and 90° from the rolling direction and the tensile biaxial R-value. The downhill simplex method is used to solve these ten and six high nonlinear equations for the yield and plastic potential functions, re- spectively. The results show that the presented new criterion is appropriate for anisotropic asymmetric metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号