首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two approaches to the analysis of the stress–strain state of thick cylindrical shells are elaborated. The shell is divided by concentric cross-sectional circles into several coaxial cylindrical shells. Each of these shells has its own curvature determined on its midline. The stress–strain state of the original shell is described by satisfying the interface conditions between the component shells. The distribution of unknown functions throughout the thickness is determined by finding the analytic solution of a system of differential equations in the first approach and is approximated by polynomial functions in the second approach. The stress–strain state of thick shells is analyzed. It is revealed that the effect of reduction becomes stronger with increasing curvature  相似文献   

2.
The stress–strain state in the alveolar bone crest is analyzed over a wide range of stiffness ratios between the bone and the primary strut of the subperiosteal implant. Recommendations on the rational design of subperiosteal implants are given  相似文献   

3.
In this study, an inverse method based on the Levenberg–Marquardt algorithm was evaluated in a numerical experiment to determine the large strain viscoelastic properties from the bubble inflation test. The properties were determined by iteratively matching the calculated bubble pressure–piston displacement data from finite element simulations to a single set of bubble pressure–piston displacement data. The strain-dependent behaviour was characterised by a two-parameter Mooney–Rivlin hyperelastic model, while the time-dependent behaviour was characterised by a three-parameter power law equation. Different initial guesses were used to evaluate the inverse method, and transformation functions were applied to constrain the intermediate guesses to be within bounds. It was found that estimates of the viscoelastic properties could be obtained reasonably using only one set of bubble pressure–piston displacement data. Estimates of the properties were likely affected by the limited time duration of the test, as the behaviour at shorter and particularly larger time scales was less accurately predicted.  相似文献   

4.
The stress–strain behaviour of extruded AA6xxx and AA7xxx aluminium alloys in T6 temper was studied at a wide range of strain rates. Tensile tests at low to medium strain rates were performed in a standard tensile test machine, while a split-Hopkinson tension bar was used to carry out tests at high rates of strain. Extruded aluminium alloys have anisotropic mechanical properties, and tests were therefore done in three directions with respect to the extrusion direction. It is found that the AA6xxx alloys exhibit no significant rate sensitivity in the stress–strain behaviour, while moderate rate sensitivity was found for the AA7xxx alloys. There seems to be no significant difference between the rate sensitivity in the three tensile directions. The experimental data were used to identify the parameters of a thermo-viscoplastic constitutive relation for the extruded alloys, which includes the effects of strain hardening, strain-rate hardening, thermal softening and plastic anisotropy.  相似文献   

5.
The aim of this article is the analysis of fracture growth in media characterized by random distribution of micro-failure mechanisms per unit volume. The deformation behavior of the material was investigated in terms of a spherical unit cell model, containing an initially spherical cell of porous. The effective elastic bulk modulus as a function of micro-failures concentration was computed and using the Griffith critirium and certain boundary conditions the rate at which the void area varies was determined too. Along the analysis a special form of the strain energy function for compressible Blatz–Ko material was used. The applied traction on the unit cell of the material was determined as a function of the porosity of the material, as well as the strain field within the solid. At low values of the porosity, as the applied external traction was increased instabilities were observed in the void growth.  相似文献   

6.
A virtual Taylor impact of cellular materials is analyzed with a wave propagation technique, i.e. the Lagrangian analysis method, of which the main advantage is that no pre-assumed constitutive relationship is required. Time histories of particle velocity, local strain, and stress profiles are calculated to present the local stress–strain history curves, from which the dynamic stress–strain states are obtained.The present results reveal that the dynamic-rigid-plastic hardening(D-R-PH) material model introduced in a previous study of our group is in good agreement with the dynamic stress–strain states under high loading rates obtained by the Lagrangian analysis method. It directly reflects the effectiveness and feasibility of the D-R-PH material model for the cellular materials under high loading rates.  相似文献   

7.
The plastic strain rate plays a central role in macroscopic models on elasto-viscoplasticity. In order to discuss the concept behind this quantity, we propose, first, a kinetic toy model to describe the dynamics of sliding layers representative of plastic deformation of single crystalline metals. The dynamic variable is given by the distribution function of relative strains between adjacent layers, and the plastic strain rate emerges as the average hopping rate between energy wells. We demonstrate the behavior of this model under different deformations and how it captures the elastic-to-plastic transition. Second, the kinetic toy model is reduced to a closed evolution equation for the average of the relative strain, allowing us to make a direct link to macroscopic theories. It is shown that the constitutive relation for the plastic strain rate does not only depend on the stress, but also on the macroscopic applied deformation rate, contrary to common practice.  相似文献   

8.
Stress redistribution induced by excavation results in the tensile zone in parts of the surrounding rock mass. It is significant to analyze the localization of deformation and damage, and to study the complete stress–strain relation for mesoscopic heterogeneous rock under dynamic uniaxial tensile loading. On the basis of micromechanics, the complete stress–strain relation including linear elasticity, nonlinear hardening, rapid stress drop and strain softening is obtained. The behaviors of rapid stress drop and strain softening are due to localization of deformation and damage. The constitutive model, which analyze localization of deformation and damage, is distinct from the conventional model. Theoretical predictions have shown to consistent with the experimental results.  相似文献   

9.
A modification of the Kolsky method with the use of the split Hopkinson bar is proposed, which allows testing lowdensity materials under cyclic loads of an identical sign. Cyclic dynamic testing of specimens is based on the essential difference of acoustic impedances of the material of the specimen tested from the material of pressure bars. The choice of the supportbar length several times greater than the loadingbar length allows registration of strain pulses in several cycles. Results are presented for the proposed modification of the Kolsky method used for tests in compression of foam plastic of two densities under three loading cycles.  相似文献   

10.
To simulate metal-forming processes, one has to calculate the stress–strain state of the metal, i.e. to solve the relevant boundary-value problems. Progress in the theory of plasticity in that respect is well known, for example, via the slip-line method, the finite element method, etc.) , yet many unsolved problems remain. It is well known that the slip-line method is scanty. In our opinion the finite element method has an essential drawback. (No one is against the idea of the discretization of the body being deformed and the approximation of the fields of mechanical variables.) The results of calculation of the stress state by the FEM do not satisfy Newtonian mechanics equations (these equations are said to be softened, i.e, satisfied approximately) and stress fields can be considered poor for solution of the subsequent fracture problem. We believe that it is preferable to construct an approximate solution by the FEM and soften the constitutive relations (not Newtonian mechanics equations) , especially as, in any event, they describe the rheology of actual deformable materials only approximately. We seem to have succeeded in finding the solution technique.Here we present some new results for solving rather general boundary-value problems which can be characterized by the following: the anisotropy of the materials handled; the heredity of their properties and compressibility; finite deformations; non-isothermal flow; rapid flow, with inertial forces; a non-stationary state; movable boundaries; alternating and non-classical boundary conditions, etc.Solution by the method proposed can be made in two stages: (1) integration in space with fixed time, with an accuracy in respect of some parameters; (2) integration in time of certain ordinary differential equations for these parameters.In the first stage the method is based on the principle of virtual velocities and stresses. It is proved that a solution does exist and that it is the only possible one. The approximate solution softens (approximately satisfies) the constitutive relations, all the rest of the equations of mechanics being satisfied precisely. The method is illustrated by some test examples.  相似文献   

11.
A problem of magnetoelasticity for a flexible conical shell in a nonstationary magnetic field is solved. The effect of conicity on the stress–strain state of the shell is analyzed  相似文献   

12.
The stress–strain state of an orthotropic spherical shell with thickness varying in two coordinate directions is analyzed. Different boundary conditions are considered, and a refined problem statement is used. A numerical analytic method based on spline-approximation and discrete orthogonalization is developed. The stress–strain state of spherical orthotropic shells with variable thickness is studied  相似文献   

13.
The plane problem for a cracked body with a piecewise-linear stress–strain diagram under tension is reduced by the Fourier transformation to a system of nonlinear algebraic equations. The system is numerically solved for plane strain and stress states of a perfect elastoplastic material to study plastic zones, stress and strain distributions, and displacements of crack faces  相似文献   

14.
15.
Previous studies carried out in the early 1990s conjectured that the main compressible effects could be associated with the dilatational effects of velocity fluctuation. Later, it was shown that the main compressibility effect came from the reduced pressure-strain term due to reduced pressure fluctuations. Although better understanding of the compressible turbulence is generally achieved with the increased DNS and experimental research effort, there are still some discrepancies among these recent findings. Analysis of the DNS and experimental data suggests that some of the discrepancies are apparent if the compressible effect is related to the turbulent Mach number, Mt. From the comparison of two classes of compressible flow, homogenous shear flow and inhomogeneous shear flow (mixing layer), we found that the effect of compressibility on both classes of shear flow can be characterized in three categories corresponding to three regions of turbulent Mach numbers: the low-Mr, the moderate-Mr and high-Mr regions. In these three regions the effect of compressibility on the growth rate of the turbulent mixing layer thickness is rather different. A simple approach to the reduced pressure-strain effect may not necessarily reduce the mixing-layer growth rate, and may even cause an increase in the growth rate. The present work develops a new second-moment model for the compressible turbulence through the introduction of some blending functions of Mt to account for the compressibility effects on the flow. The model has been successfully applied to the compressible mixing layers.  相似文献   

16.
An exact solution for inhomogeneous strain and stress distributions within a finite cubic isotropic cylinder of Si1?xGex alloy under the axial Point Load Strength Test (PLST) is analytically derived. Lekhnitskii’s stress function is used to uncouple the equations of equilibrium, and a new expression for the stress function is proposed so that all of the governing equations and boundary conditions are satisfied exactly. The solution for isotropic cylinders under the axial PLST is covered as a special case. Numerical results show that the strain and stress distributions in the central region within half height and radius are relatively homogeneous, but strain and stress concentrations are usually developed near the point loads. The largest tensile strain and stress are always induced along the line joining the point loads, which gives theoretical explanation why most of the cylindrical specimens are split apart along the line joining the point loads under the axial PLST. In addition, by using envelope-function method, the effect of strain on the valence-band structure of Si1?xGex alloy is analyzed. It is found that strain changes the band quantum gap and the shape of constant energy surfaces of the heavy-hole and the light-hole bands of Si1?xGex alloy.  相似文献   

17.
The problem of bending of beveled circular cylindrical shells is solved by parametrizing the shell and reducing the two-dimensional boundary-value problem to a one-dimensional one by the spline-collocation method. This problem is solved by the stable discrete-orthogonalization method. The effect of the variability of the geometrical parameters on the displacement fields of circular cylinders is analyzed  相似文献   

18.
A nonlinear two-dimensional model of a magnetoelastic flexible current-carrying ring plate is developed.Asystem of nonlinear equations describing the stress–strain state of flexible current-carrying plates in nonstationary mechanical and electromagnetic fields is derived. The stress state of a flexible plate of variable stiffness in a magnetic field is determined  相似文献   

19.
The method for calculating stress–strain state and fracture proposed by Kolmogorov, 1995and in Part 1 of this present paper is illustrated by the simple problem of a thin bar impacting a rigid obstacle. Known exact solutions are used to test the method. On the basis of the stability theory, the one-dimensional solution has been shown to be legitimate. Mathematical simulation of bar fragmentation resulting from impact has been carried out.  相似文献   

20.
This paper describes the development and evaluation of temperature-compensated resistance strain gages for use to 800°C. These gages included single-element gages and double-element half-bridge gages. The filament of single-element gages was fabricated from specially developed Fe–Cr–Al–V–Ti–Y alloy wire. When bonded to high-temperature Ni-based alloy GH39 after stabilization at 800°C for one hour, the apparent strain from room temperature to 800°C was less than 2000 m/m. Double-element gages were fabricated from Pt–W–Re–Ni–Cr–Y alloy wire (active grid) and Pt–Ir alloy wire (compensating grid). When bonded to different high-temperature alloy specimens and stabilized, and when ballast resistance in series with the compensating grid adjusted suitably, the gages' apparent strains from room temperature to 800°C were less than 2400 m/m.Effects of preoxidization of Fe–Cr–Al wire on the characteristics of the single-element gages are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号