首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of a uniform longitudinal magnetic field on the binding energy and photoionization cross-section of a hydrogen-like donor impurity is studied for a semiconductor quantum well-wire approximated by a cylindrical well of finite depth. The selection rules and analytical expressions for the photoionization cross-section are obtained depending on the magnetic field induction, impurity position, and light wave polarization.  相似文献   

2.
The effect of a longitudinal magnetic and a transverse electric fields on the binding energy of a hydrogen-like donor impurity is studied for a semiconductor quantum well-wire approximated by a cylindrical well of finite depth. It is shown that the magnetic and electric fields as well as the impurity distance from the wire axis are the effective tools for the influence on the binding energy.  相似文献   

3.
Using a variational approach, the binding energy of shallow hydrogenic impurities in a parabolic quantum wire is calculated within the effective mass approximation. The polaron effects on the ground-state binding energy in electric and magnetic fields are investigated by means of the Pekar–Landau variation technique. The results for the binding energy as well as a polaronic correction are obtained as a function of the applied fields and the impurity positions.  相似文献   

4.
We consider the effects of electric and magnetic fields as well as of hydrostatic pressure on the donor binding energy in InAs Pöschl-Teller quantum rings. The ground state energy and the electron wave function are calculated within the effective mass and parabolic band approximations, using the variational method. The binding energy dependencies on the electric field strength and the hydrostatic pressure are reported for different values of quantum ring size and shape, the parameters of the Pöschl-Teller confining potential, and the magnetic field induction. The results show that the binding energy is an increasing or decreasing function of the electric field, depending on the chosen parameters of the confining potential. Also, we have observed that the binding energy is an increasing/decreasing function of hydrostatic pressure/magnetic field induction. Likewise, the impurity binding energy behaves as an increasing/decreasing function of the inner/outer radii of the quantum ring nanostructure.  相似文献   

5.
Within the effective-mass approximation, we have investigated the binding energies of donor impurities as a function of the wire dimensions and the photoionization cross-section for a hydrogenic donor impurity placed on the center of the quantum well-wire as a function of the normalized photon energy in the GaAs, Ge and Si quantum wires with infinite barriers. The calculations are performed by the variational method based on a two-parametric trial wave function. The results show that the impurity binding energy and the photoionization cross-section depend strongly on both wire dimensions and material parameters.  相似文献   

6.
This work is concerned with the theoretical study of the combined effects of applied electric field and hydrostatic pressure on the binding energy and impurity polarizability of a donor impurity in laterally coupled double InAs/GaAs quantum-well wires. Calculations have been made in the effective mass and parabolic band approximations and using a variational method. The results are reported for different configurations of wire and barriers widths, impurity position, and electric field and hydrostatic pressure strengths. Our results show that for symmetrical structures the binding energy is an even function of the impurity position along the growth direction of the structure. Also, we found that for hydrostatic pressure strength up to 38 kbar, the binding energy increases linearly with hydrostatic pressure, while for larger values of hydrostatic pressure the binding energy has a non-linear behavior. Finally, we found that the hydrostatic pressure can increase the coupling between the two parallel quantum-well wires.  相似文献   

7.
The donor impurity-related electron states in GaAs cone-like quantum dots under the influence of an externally applied static electric field are theoretically investigated. Calculations are performed within the effective mass and parabolic band approximations, using the variational procedure to include the electron–impurity correlation effects. The uncorrelated Schrödinger-like electron states are obtained in quasi-analytical form and the entire electron–impurity correlated states are used to calculate the photoionisation cross section. Results for the electron state energies and the photoionisation cross section are reported as functions of the main geometrical parameters of the cone-like structures as well as of the electric field strength.  相似文献   

8.
A system of an electron with a hydrogenic impurity confined in a two-dimensional anisotropic quantum dot has been investigated. We report a calculation for the binding energy of a donor impurity. The important feature of a donor impurity in a two-dimensional anisotropic quantum dot is obtained via an analysis of the binding energy. The photoionization cross section associated with intersubband transitions has been calculated. The results are presented as a function of the incident photon energy. The results show that the photoionization cross section of a donor impurity in a two-dimensional anisotropic quantum dot is strongly affected by the degree of anisotropy and the size of the quantum dot.  相似文献   

9.
Using a variational technique, the effect of electron-longitudinal optical (LO) phonon interaction on the ground and the first few excited states of a hydrogenic impurity in a semiconductor quantum wire of rectangular cross section under an external electric field is studied theoretically for the impurity atom doped at various positions. The results for the binding energy as well as polaronic correction are obtained as a function of the size of the wire, the applied uniform electric field and the position of the impurity. It is found that the presence of optical phonons changes significantly the values of the impurity binding energies of the system. Taking into account the electron–LO phonon interaction the 1s→2py and 1s→2pz transition energies are calculated as a function of applied electric field for different impurity positions.  相似文献   

10.
Double quantum well heterostructures are quite important for the exploration of correlated electron states in two-dimensional systems. By using the variational procedure, within the effective-mass and parabolic-band approximations, the effects of both electric field and hydrostatic pressure on the shallow-donor-impurity related polarizability and photoionization cross-section in GaAs–Ga1−xAlxAs double asymmetric quantum wells are presented. The electric field is considered to be applied along the growth direction. It is found that the impurity binding energy and polarizability can be tuned by means of an applied external electric field or hydrostatic pressure in asymmetric double quantum wells, a behavior which could be used in the design and construction of semiconductor devices. The photoionization cross-section magnitude increases as the pressure and applied electric field are increased, except beyond the ΓX crossover in the barrier material, where a decrease of the photoionization cross-section is expected due the smaller confinement of the impurity wave function.  相似文献   

11.
Using a variational approach, we have calculated the donor impurity related photoionization cross-section and impurity binding in GaAs/GaAlAs quantum-well wires under different temperature and hydrostatic pressure conditions. Our calculation have revealed the dependence of the photoionization cross-section and the impurity binding on temperature and hydrostatic pressure.  相似文献   

12.
利用Dirac-Slater相对论平均自洽场理论,研究了不同原子体系光电离截面在不同核模型下的差异.考虑原子核大小时,核的尺寸效应使电子所感受到的有效核电荷减小,并进而影响到电子的概率分布及光电离截面等;对没有考虑原子核大小的点模型,由于不存在核的尺寸效应,出射光电子的波函数有较大相移,从而有可能出现Cooper极小.当入射光子的能量远大于相关电子的电离能时,不同核模型下电子束缚能及平均半径等的差异将相对减小,从而使光电离截面随入射光子能量的变化趋于一致.  相似文献   

13.
Based on the effective-mass approximation, the competition effects between the laser field and applied electric field on impurity states have been investigated variationally in the ZB GaN/AlGaN quantum well (QW). Numerical results show that for any laser field, the electric field makes the donor binding energy present asymmetric distribution with respect to the center of the QW. Moreover, when the laser field is weak, the electric field effects are obvious on the donor binding energy; however, the electric field effects are insensitive to the variation of donor binding energy in the ZB GaN/AlGaN QW with strong laser field.  相似文献   

14.
Esra Aciksoz  Orhan Bayrak  Asim Soylu 《中国物理 B》2016,25(10):100302-100302
The behavior of a donor in the GaAs–Ga_(1-x)Al_xAs quantum well wire represented by the Morse potential is examined within the framework of the effective-mass approximation. The donor binding energies are numerically calculated for with and without the electric and magnetic fields in order to show their influence on the binding energies. Moreover, how the donor binding energies change for the constant potential parameters(De, re, and a) as well as with the different values of the electric and magnetic field strengths is determined. It is found that the donor binding energy is highly dependent on the external electric and magnetic fields as well as parameters of the Morse potential.  相似文献   

15.
A theoretical study of the electronic states in a spherical quantum dot with and without a hydrogenic impurity is performed within the effective mass approximation taking into account the dielectric mismatch effect. By considering the joint action of the quantum confinement and polarization charges, the photoionization cross section for an on-center donor and intersublevel optical absorption are investigated. We found that: i) the subband energies increase while the 1s and 2p impurity levels decrease when the dielectric mismatch between the dot and its environment enhances; ii) the dielectric mismatch has a significant effect on the peak position and magnitude of the photoionization cross section so that the behavior of this quantity can indicate the material in contact with the nanostructure; iii) the absorption spectrum is less sensitive to the environment dielectric properties but it significantly depends on the dot radius as well as on the impurity presence. The possibility of tuning the resonant energies by using the combined effect of the quantum confinement and dielectric mismatch between the dot and the surrounding medium can be useful in designing new optoelectronic devices.  相似文献   

16.
Within the effective-mass approximation we calculate the energies of a donor impurity in an elliptical quantum ring subjected to a magnetic field. The energies are found to exhibit Aharonov-Bohm oscillations depending on the magnetic field and the eccentricity. As the eccentricity increases, the energies decrease and the period increases.  相似文献   

17.
GaAs基InAs量子点中类氢杂质的束缚能   总被引:2,自引:1,他引:1  
在有效质量近似下,采用微扰法研究了InAs/GaAs量子点内类氢杂质基态及低激发态的束缚能.受限势采用抛物形势,在二维平面极坐标下,精确地求解了电子的薛定谔方程.数值计算结果表明,类氢杂质基态及低激发态的束缚能敏感地依赖于抛物形势的角频率,受类氢杂质的影响,谱线发生蓝移.这一结果对设计和制备量子点器件是有价值的.  相似文献   

18.
1 Introduction Quantum dots (QDs), often referred to as artificial atoms, are currently under in-tense study because they provide ideal structures used in optical-electronic microdevices, so they are essential in developing microtechniques. They are also essential in the aca-demic aspect, because rich information on microstructures can be extracted both theo-retically and experimentally. Since the early fabrication of the QDs, external magnetic field has been used to control their propertie…  相似文献   

19.
In the effective mass approximation, energy eigenvalues of an electron confined in ellipsoidal and semi-ellipsoidal quantum dots, with and without hydrogenic impurity, under the influence of an external electric field have been investigated, using the matrix diagonalization method. The lower-laying states of the electron as functions of the electric field strength, the dot size and its geometry are calculated. Our results show that the electronic states are strongly affected by the applied electric field, the size and the geometry of the dot.  相似文献   

20.
We show that the theoretical predictions on high energy behavior of the photoionization cross section of fullerenes depend crucially on the form of the function V(r) which approximates the fullerene field. The shape of the high energy cross section is obtained without solving the wave equation. The cross section energy dependence is determined by the analytical properties of the function V(r).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号