首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zifan Zhou  Biao Wang  Shaopeng Lin  Kun Wang 《Optik》2011,122(13):1179-1182
A series of Hf:Fe:Mn:LiNbO3 crystals with various levels of HfO2 doping were grown by Czochralski technique. The infrared spectra and ultraviolet spectra were measured and discussed to investigate their structure and defects. The optical damage resistance was characterized by the transmitted beam pattern distortion method. The nonvolatile two-color holographic recording experimental results showed that the recording speed was faster with the increase of HfO2 doping concentration and at the same time little loss of nonvolatile diffraction efficiencies could be achieved.  相似文献   

2.
The near-infrared nonvolatile holographic recording has been realized in a doubly doped LiNbO3:Fe:Rh crystal by the traditional two-center holographic recording scheme, for the first time. The recording performance of this crystal has been investigated by recording with 633 nm red light, 752 nm red light and 799 nm near-infrared light and sensitizing with 405 nm purple light. The experimental results show that, co-doped with Fe and Rh, the near-infrared absorption and the photovoltaic coefficient of shallow trap Fe are enhanced in this LiNbO3:Fe:Rh crystal, compared with other doubly doped LiNbO3 crystals such as LiNbO3:Fe:Mn. It is also found that the sensitizing light intensity affects the near-infrared recording sensitivity in a different way than two-center holographic recording with shorter wavelength, and the origin of experimental results is analyzed.  相似文献   

3.
Nonvolatile photorefractive gratings have been recorded in LiNbO3:Cu:Ce crystals by using a He–Ne laser (633 nm) for recording and an argon ion laser (458 nm) for sensitizing. The sensitizing light increases the recording sensitivity by abexp(−Is/c) and saturation behavior will appear with high enough intensity of sensitizing light. The recording light increases the slope of η1/2 as a function of time during the initial stages of hologram formation by sublinear Ixr (x<1) and thus the recording light decreases the recording sensitivity. The dependence of saturation diffraction efficiency on the intensities of the recording and sensitizing light shows that there is a maximum dynamic range of the recording process.  相似文献   

4.
Wei Yuan  Biao Wang  Decai Ma  Rui Wang 《Optik》2009,(18):995-999
Congruent In (3 mol%):Ce:Cu:LiNbO3 crystals have been grown by the Czochralski method in air. Some crystal samples were reduced in Li2CO3 power, and others were oxidized in Nb2O5 power. The structure of crystals was studied by an infrared transmittance spectrum. The resistance ability to optical damage and the photorefractive properties were measured by light-induced scattering experiments and two-beam coupling, respectively. It has been found that the reduction treatment increased the photoconductivity , which resulted in decreased erasure time and diffraction efficiency, but higher light-induced scattering resistance ability. The oxidation treatment caused the inverse affect. Finally, the nonvolatile holographic recording in In:Ce:Cu:LiNbO3 crystals is realized.  相似文献   

5.
FuRi Ling  Li Dan  Hai Zhou 《Optik》2010,121(4):322-325
We investigate the persistent holographic recording in triply doped LiNbO3:Mn:Ce:Fe crystals at different oxidation/reduction states. The experimental results show that there is an optimum oxidation/reduction state, which results in the best dynamic range M/#. Compared with doubly doped LiNbO3:Ce:Fe, we found that the nonvolatile diffraction efficiency and the best dynamic range M/# obtained in triply doped samples are larger than that obtained in doubly doped samples. The reason for the increase of the crystal about the nonvolatile diffraction efficiency and the dynamic range M/# was also explained.  相似文献   

6.
The near-stoichiometric LiNbO3 crystal co-doped with In2O3, Fe2O3, and CuO has been grown from a Li-rich melt (Li/Nb = 1.38, atomic ratio) by the Czochralski method in air atmosphere for the first time. The OH absorption spectra were characterized to investigate the structure defects of the crystals. The appearance of the 3506 cm−1 absorption peak manifests that the composition of the grown crystal is close to the stoichiometric ratio. The photorefractive properties were also measured by the two-wave coupling experiments. The results show that the near-stoichiometric In:Fe:Cu:LiNbO3 crystal has a larger refractive index change, higher recording sensitivity and larger two-wave coupling gain coefficient than those obtained in the congruent In:Fe:Cu:LiNbO3 crystal under the same experimental conditions. The material of near-stoichiometric In:Fe:Cu:LiNbO3 crystal is a promising candidate for blue photorefractive holographic recording.  相似文献   

7.
Doping MgO, MnO and Fe2O3 in LiNbO3 crystals, tri-doped Mg:Mn:Fe:LiNbO3 single crystals were prepared by the conventional Czochralski method. The UV-vis absorption spectra were measured and the shift mechanism of absorption edge was also investigated in this paper. In Mg:Mn:Fe:LiNbO3 crystal, Mn and Fe locate at the deep level and the shallow level, respectively. The two-photon holographic storage is realized in Mg:Mn:Fe:LiNbO3 crystals by using He-Ne laser as the light source and ultraviolet as the gating light. The results indicated that the recording time can be significantly reduced for introducing Mg2+ in the Mg:Mn:Fe:LiNbO3 crystal.  相似文献   

8.
Wei Yuan  Biao Wang  Decai Ma 《Optik》2011,122(1):81-83
Ti, Fe Co-doped LiTaO3 (LT) crystals have been grown by the Czochralski method from the congruent melts. The absorption spectra of crystal were measured before and after ultraviolet illumination. Holograms have been recorded in doubly doped crystals with continuous-wave laser light by use of two-color method. The maximum value of refractive-index changes 7×10−5 is achieved.  相似文献   

9.
Photorefractive properties of Hf:Fe:LiNbO3 crystals with various [Li]/[Nb] ratios have been investigated at 488 nm wavelength based on the two-wave coupling experiment. High diffraction efficiency and large recording sensitivity are observed and explained. The decrease in Li vacancies is suggested to be the main contributor to the increase in the photoconductivity and subsequently to the induction of the improvement of recording sensitivity. The saturation diffraction efficiency is measured up to 80.2%, and simultaneously the recording sensitivity of 0.91 cm/J is achieved to in the Hf:Fe:LiNbO3 crystal grown from the melt with the [Li]/[Nb] ratio of 1.20, which is significantly enhanced as compared with those of the Hf:Fe:LiNbO3 crystal with the [Li]/[Nb] ratio of 0.94 in melt under the same experimental conditions. Experimental results definitely show that increasing the [Li]/[Nb] ratio in crystal is an effective method for Hf:Fe:LiNbO3 crystal to improve its photorefractive properties.  相似文献   

10.
根据双中心带输运模型,对(Ce,Cu):LiNbO3晶体双中心非挥发全息记录进行了理论研究与优化。推导了(Ce,Cu):LiNbO3晶体的微观参量,采用数值方法通过严格求解模拟双中心带输运方程来模拟全息记录过程。分析了记录过程中,记录与敏化光强、Ce和Cu掺杂浓度以及晶体微观参量对(Ce,Cu):LiNbO3晶体双中心全息记录的影响。发现(Ce,Cu):LiNbO3晶体非挥发全息记录中实现高衍射效率与固定效率的主导因素是深中心Cu,在记录过程中,深中心Cu建立起了很强的空间电荷场。数值模拟的结果经过实验验证,最高饱和与固定衍射效率别为60.5%和53.8%。  相似文献   

11.
申岩  张国庆  于文斌  郭志忠  赵业权 《物理学报》2012,61(18):184205-184205
以双中心模型为基础, 理论研究了LiNbO3:Cu:Ce晶体在稳态情况下的非挥发双光双步全息存储性能. 研究中考虑了在晶体深能级中心Cu+/Cu2+ 与浅能级中心Ce3+/Ce4+ 之间由隧穿效应引起的电荷直接交换过程. 结果表明, 总的空间电荷场大小主要由深能级上的空间电荷场所决定, 并且非挥发全息存储性能主要由隧穿效应引起的深能级中心Cu+/Cu2+ 与浅能级中心Ce3+/Ce4+ 之间的电荷直接交换过程所决定. 与隧穿效应相关的材料参数对于非挥发双光双步全息存储的性能起到了至关重要的作用.  相似文献   

12.
A series of Zn: In: Fe: LiNbO3 crystals are grown by the Czochralski technique with various ratios of Li/Nb = 0.94, 1.05, 1.20 and 1.38 in the melt. The Zn, In, Fe, Nb and Li concentrations in the crystals are analyzed by inductively coupled plasma (ICP) spectrometry. The results indicate that with increasing the [Li]/[Nb] ratio in melt, [Li]/[Nb] ratio increases and goes up continuously in the crystal, the segregation coefficients of both Zn and In ions decrease. The absorption spectra measurement and two-wave coupling experiment are employed to study the effect of [Li]/[Nb] ratio on photorefractive properties of Zn: In: Fe: LiNbO3 crystals. It is found that the [Li]/[Nb] ratio increases, the write time is shortened and the photorefractive sensitivity is improved.  相似文献   

13.
The congruent In (3 mol%):Fe (0.03 wt%): LiNbO3 crystal has been grown by Czochralski method in air. Some crystal samples were reduced in Li2CO3 powder, and others were oxidized in Nb2O5 powder. The defects and ions location in crystal were investigated by infrared (IR) transmission spectrum. The photorefractive properties were measured by two-wave coupling and light-induced scattering resistance experiments. In the oxidized sample, the photovoltaic effect was the dominant process during recording. However, for the as-grown sample as well as the reduced, the photorefractive effect was governed by the diffuse field and the photovoltaic field, together. In addition, the reduction treatment made the photoconductivity increase, which resulted in shorter erasure time and lower diffraction efficiency, but higher light-induced scattering resistance ability. The oxidation treatment caused the inverse effect.  相似文献   

14.
周期极化掺镁不同组分LiNbO3晶体的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用气相平衡扩散法研制出掺镁不同组分的LiNbO3晶体,并对其极化特性进行了研究.研究表明晶体的开关电场和自发极化不仅与晶体组分[Li]/[Nb]比有关而且与掺镁量有关,[Li]/[Nb]比为0.973掺入2mol% MgO的近化学比LiNbO3晶体的开关电场仅为1.8kV/mm,是同成分晶体的1/12,且其极化结构的质量要远好于同成分LiNbO3晶体和近化学比LiNbO3晶体. 关键词: 气相平衡扩散 3晶体')" href="#">掺镁LiNbO3晶体 周期极化  相似文献   

15.
Holographic data storage is promised to be the next-generation optical storage technology for many years. The Zn:Fe:LiNbO3 crystal is studied widely because of its promising holographic storage properties. The forced oscillator model is used to explain the self-erasing phenomenon in the reduced Zn:Fe:LiNbO3 crystals. It is showed that the total spatial charge field is dominated by two kinds of carrier with different respond time, which are electron and hole, respectively. The cooperative action of two kinds carrier induces that the total charge field non-monotonically varies with the recording time. The same diffraction efficiency of hologram with equal exposure energy is realized by the self-erasing property. The precision of the optical correlation recognition based on holographic storage will be improved.  相似文献   

16.
戴翠霞  刘立人  刘德安  周煜  柴志方  栾竹 《中国物理》2005,14(12):2491-2495
By jointly solving two-centre material equations with a nonzero external electric field and coupled-wave equations, we have numerically studied the dependence of the non-volatile holographic recording in LiNbO3:Ce:Cu crystals on the external electric field. The dominative photovoltaic effect of the non-volatile holographic recording in doubly doped LiNbO3 crystals is directly verified. And an external electric field that is applied in the positive direction along the c-axis (or a large one in the negative direction of the c-axis) in the recording phase and another one that is applied in the negative direction of the c-axis in the fixing phase are both proved to benefit strong photorefractive performances. Experimental verifications are given with a small electric field applied externally.  相似文献   

17.
Xihe Zhen  Qiang Li 《Optik》2005,116(4):149-152
The new non-volatile holographic storage materials, Zn:Mn:Fe:LiNbO3 crystals, were prepared by Czochralski technique. Their microstructure was measured and analyzed by infrared (IR) transmission spectra. The optical damage resistance of Zn:Mn:Fe:LiNbO3 crystals was characterized by the transmitted beam pattern distortion method. It increases remarkably when the concentration of ZnO is over a threshold concentration. Its value in Zn(7.0 mol%):Mn:Fe:LiNbO3 crystal is about three orders of magnitude higher that in Mn:Fe:LiNbO3 crystal. The photoinduced birefringence change was measured by the Sénarmont's method. It decreased with ZnO concentration increasing. The dependence of the defects on the optical damage resistance was discussed.  相似文献   

18.
李小明  王芳  赵昆  赵嵩卿 《中国物理 B》2010,19(7):77801-077801
This paper investigates the photovoltaic properties of miscut LiNbO 3 single crystal with different thicknesses under irradiation of a 248 nm ultraviolet laser pulse with 20 ns duration without an applied bias.Nanosecond photovoltaic response is observed and faster rise time is obtained in thinner samples.In accord with the 248 nm laser duration,the full width at half maximum of the photovoltaic signals keeps a constant of ~ 20 ns.With decrease of the crystal thickness,the photovoltaic sensitivity was improved rapidly at first and then decreased,and the maximum photovoltage occurred at 0.38 mm-thick single crystal.The present results demonstrate that decreasing the LiNbO3 single crystal thickness can obtain faster response time and improve the photovoltaic sensitivity.  相似文献   

19.
By sensitizing with 514 nm green light, 488 nm blue light and 390 nm ultraviolet light, respectively, recording with 633 nm red light, effect of wavelength of sensitizing light on holographic storage properties in LiNbO3:Fe:Ni crystal is investigated in detail. It is shown that by shortening the wavelength of sensitizing light gradually, nonvolatile holographic recording properties of oxidized LiNbO3:Fe:Ni crystal is optimized gradually, 390 nm ultraviolet light is the best as the sensitizing light. Considering the absorption of sensitizing light, to obtain the best performance in two-center holographic recording we must choose a sensitizing wavelength that is long enough to prevent unwanted absorptions (band-to-band, etc.) and short enough to result in efficient sensitization from the deep traps. So in practice a trade-off is always needed. Explanation is presented theoretically.  相似文献   

20.
We present a Judd-Ofelt spectroscopic analysis on the Mg/Er-codoped congruent lithium niobate (LiNbO3) crystals. The Judd-Ofelt model is applied to the room temperature unpolarized absorption intensities of Er3+ ions on eleven transition bands to determine their intensity parameters: Ω2=2.36×10−20 cm2, Ω4=0.76×10−20 cm2, Ω6=0.30×10−20 cm2 in Er:LiNbO3 crystal heavily codoped with MgO. The radiative lifetime of 2H9/2 becomes longer when MgO is added into Er:LiNbO3 crystal. The experimental lifetimes are obtained using microsecond time-resolved spectra at 400 nm femtosecond pulse excitation to predict radiative quantum efficiency. Combining higher radiative quantum efficiency with longer radiative lifetime, we conclude that Mg/Er-codoped LiNbO3 crystals are more suitable than Er: LiNbO3 ones in laser materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号