首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
硫化物矿物LA-ICP-MS激光剥蚀元素信号响应   总被引:3,自引:0,他引:3  
采用193 nm ArF准分子激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)对5种天然硫化物矿物进行激光剥蚀分析, 基于不同硫化物矿物的剥蚀形貌特征和元素瞬时信号响应, 考察了硫化物矿物的元素分馏效应及激光频率、能量和激光斑径对硫化物矿物激光剥蚀行为的影响. 结果表明, 不同硫化物矿物的激光剥蚀形貌和元素分馏效应存在明显差异, 其中黄铁矿、辉钼矿和闪锌矿的剥蚀晕约为剥蚀斑径的10倍, 而黄铜矿和磁黄铁矿的剥蚀晕约为剥蚀斑径的14倍; 黄铜矿、磁黄铁矿和闪锌矿元素分馏因子(EFI)约为1.0, 其元素分馏效应可以忽略, 而黄铁矿和辉钼矿存在明显的元素分馏效应. 在对硫化物矿物的LA-ICP-MS分析中, 选择较大的激光剥蚀斑径、较小的激光剥蚀频率与激光能量可获得理想的信号强度和准确的分析结果.  相似文献   

2.
193nm ArF准分子激光剥蚀系统高空间分辨率下元素分馏研究   总被引:3,自引:0,他引:3  
研究了193 nm ArF准分子激光剥蚀系统高空间分辨率下的仪器检出限、ICP质量负载元素分馏、剥蚀深度/束斑直径元素分馏以及基体效应,并在10 μm束斑直径下分析了GSD-1G、StHs6/80-G和NIST612中的微量元素.结果表明,仪器检出限随束斑直径的减小而升高,当束斑直径降低至7 μm时,部分微量元素的仪器检出限为1~10 μg/g.ICP质量负载元素分馏指数与元素第一电离能呈正相关和元素氧化物熔点呈负相关.当剥蚀深度与束斑直径比小于1∶1时,由剥蚀深度/束斑直径引起的元素分馏效应可以忽略不计.基体效应研究表明,50 μm与10 μm激光束斑下基体效应没有明显的差别.以NIST610为校准物质,Ca为内标元素,10 μm束斑直径下GSD-1G、StHs6/80-G和NIST612中的36种微量元素分析结果与定值基本吻合,分析结果与定值基本匹配.综合考虑在10 μm的空间分辨率下,该技术可满足准确分析微量元素的要求.  相似文献   

3.
详细研究了高温合金样品剥蚀过程中激光脉冲能量及频率与高温合金痕量元素信号强度的变化及其稳定性、能量密度对信号稳定性的影响,实现了激光对样品表面的层层剥蚀,从而使高温合金中低沸点元素被稳定地蒸发,并初步建立了激光剥蚀过程中理想的样品激发动力学模型.研究表明,激光剥蚀的过程是一个在固-液-气的相变基础上进行的热蒸发过程,分馏效应是基于各元素不同的蒸发能而发生的低沸点元素的选择性蒸发;随着剥蚀的层层推进,热效应的累积导致样品表面气化层下方的固-液相变,低熔点元素出现局域富集从而使信号增强是分馏效应的另一原因.  相似文献   

4.
采用自制的大气压下介质阻挡放电装置串联在激光剥蚀池与ICP炬管之间, 对激光剥蚀产生的气溶胶进行预电离. 结果表明, 元素瞬时信号轮廓的平滑度得以改善, 元素分析信号精密度(RSD, n=3)可提高2.55%. 在ArF准分子激光(193 nm)和Nd∶YAG 固体激光(213 nm)两种不同波长的激光剥蚀系统中, 元素分馏因子均比常规模式下更接近于1, 表明采用介质阻挡放电对气溶胶预电离后元素分馏效应得以有效抑制. 相比两种不同波长的激光剥蚀系统, 介质阻挡放电对213 nm固体激光的元素分馏效应改善作用明显.  相似文献   

5.
建立了激光剥蚀-电感耦合等离子-体质谱法(LA-ICP-MS)法测定纯钌中Mg、Al、Fe、Ni、Cu、Zn、Rb、Rh、Pd、Mo、Ag、Cd、Sn、Ba、Ir、Pt、Au、Pb和Si等19种杂质元素的分析方法。优化了仪器参数:给出了激光能量为60%,剥蚀孔径为110 μm,扫描速率为50 μm/s,脉冲频率为10Hz,载气流量为0.74L/min条件下,信号强度和稳定性最佳。由于钌标准样品难以获得,本文选择用纯钌粉样品,高温高压溶解后,采用ICP-MS定值所测元素(除硅外)。根据钌粉样品的ICP-MS定值结果确定了测定元素的相对灵敏度因子(RSF),对归一法结果进行较正,提高了方法准确度。方法的检出限为:0.001~12.81μg/g,相对标准偏差(RSD)为:10%~30%。采用本方法测定纯钌中杂质元素,结果与ICP-MS测定的结果吻合。  相似文献   

6.
采用激光剥蚀-扇形磁场电感耦合等离子体质谱(LA-SF-ICP-MS)技术建立了小激光斑束(15μm)线扫描定量分析方法。对比了硅酸盐矿物LA-ICP-MS分析中不同激光进样模式(点剥蚀和线扫描)对于元素信号强度和分馏效应的影响。小激光斑束点剥蚀分析元素信号强度随时间下降明显,并且剥蚀过程中元素深度分馏效应影响明显。深度分馏效应主要是由于各元素倾向于富集在不同粒径颗粒中,而不同大小颗粒在剥蚀坑附近发生冷凝沉淀的几率差异造成。实验结果表明,相对于内标元素Ca,Na、K、Cr、Co、Cd和U等元素富集在更小颗粒中;Cu、Zn、V、Mn、Fe、Ni、Tl、W、Rb、Cs等元素与Ca富集行为相似;Al、Y、Sc、Zr、Nb、Hf、Ta、Th和REE等元素易进入大颗粒中。线扫描分析具有高且稳定的元素信号强度,分析过程中剥蚀行为一致,不受深度剥蚀效应的影响。采用双剥蚀池结构进样系统研究单脉冲激光剥蚀信号结构,不同元素信号强度降低至50%需0.8~1.2 s;降低至20%需1.2~1.6 s;降低至背景值需2~3 s。本研究通过优化仪器参数降低信号叠加作用的影响,在均质和非均质样品(榍石)线扫描分析中,获得了准确的元素含量和元素比值。线扫描定量分析技术可有效降低激光斑束(≤15μm),相对于采用线扫描元素强度分布研究,数据更加直观,可表现元素比值的变化特征。通过调整激光斑束大小和扫描速度可在不同分辨率尺度下全面了解矿物中元素的分布特征。  相似文献   

7.
建立了激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)法测定纯钌中Mg、Al、Fe、Ni、Cu、Zn、Rb、Rh、Pd、Mo、Ag、Cd、Sn、Ba、Ir、Pt、Au、Pb和Si等19种杂质元素的分析方法.优化了仪器参数,给出了激光能量为60%,剥蚀孔径为110μm,扫描速率为50μm/s,脉冲频率为10 Hz,载...  相似文献   

8.
建立了飞秒激光剥蚀多接收等离子体质谱(fsLA-MC-ICP-MS)原位微区分析玄武岩玻璃中Mg同位素的方法.溶液进样-干气溶胶条件下浓度匹配实验表明,样品和标准样品中Mg浓度比在0.4 ~3.0时,可获得准确样品Mg同位素组成.激光剥蚀条件对Mg同位素的准确测定有明显的影响,激光剥蚀斑束和扫描速率变化,使得质谱仪的质量歧视效应随进样负载量不同而产生较大的变化,并影响样品Mg同位素组成;激光剥蚀频率与δ25 Mg正相关,与δ26 Mg负相关,当剥蚀频率大于4 Hz时,δ25 Mg和δ26 Mg趋于平稳;超快激光的能量密度对Mg同位素组成影响较小.利用本方法对国际标准样品的分析结果与参考值在误差范围内一致.本方法具有制样简单、快速的特点,且测试结果准确可靠,为火山玻璃中Mg同位素分析提供了有效的分析手段.  相似文献   

9.
为高精度、准确地获取含钚颗粒物中具有核保障监督意义和核取证价值的钚同位素比值,建立了激光剥蚀-多接收电感耦合等离子体质谱(LA-MC-ICP-MS)测定含钚颗粒物中240 Pu/239 Pu的分析方法.采用检漏、安装排风罩和擦拭剥蚀池内壁等方式有效降低激光剥蚀产物沾污实验室和危及人身安全的潜在风险.联用扫描电迁移率粒径谱仪(SMPS)与激光剥蚀-多接收器等离子体质谱(LA-MC-ICP-MS)研究了激光剥蚀玻璃基体标样产生气溶胶的分布特性,结果表明,剥蚀产物的主要粒径是40~500 nm,应尽量采用水平管道连接激光剥蚀进样系统与MC-ICP-MS,含钚颗粒物分析后剥蚀池持续吹扫时间应大于15 min.采用外标归一化法离线校正质量分馏效应和离子计数器检测效率,建立了含钚颗粒物中240 Pu/239 Pu的LA-MC-ICP-MS分析方法,固定束斑直径30μm、脉冲重复率5 Hz、剥蚀时间5 s,调节能量密度使含钚颗粒物模拟样品中239 Pu的信号强度分别达2×104 cps和2×105 cps,本方法对240 Pu/239 Pu测量的相对实验标准不确定度小于1.4%(n=6),测量结果与参考值的相对偏差小于4.7%,仪器调试时间和单个样品测量时间分别为9.0和0.5 h.含钚颗粒物模拟样品分析结果表明,本方法精度高、结果准确、分析速度快,可满足核保障监督、禁产核查和核取证中含钚颗粒物直接分析的需求.  相似文献   

10.
探讨了内标法和基体归一法校准的基本原理。基体归一校准法的基本步骤为:先用简单外标法测得样品中尽可能全的主、次、痕量元素含量,氧化物加和后进行100%归一,得到灵敏度校正系数,对所有元素的测定结果进行修正。修正结果的可靠性在很大程度上取决于测定元素是否"完全"。由于锆石的基体元素组成简单且易于测定,很适合用基体归一法校准。在激光剥蚀-电感耦合等离子体质谱法(LA-ICP-MS)微区原位分析中,应用基体归一校准法的最大优点是:可以避免预先用其它微区分析技术对未知样品中的内标元素进行定量。该技术可适用于具有环带结构、难以找到均匀分布的内标元素的地质样品的元素空间分布测定。在高分辨ICP-MS(Element2)和NewWave-UV-213激光系统上,应用基体归一定量技术同时分析了锆石中主、次、痕量共54种元素。对未知锆石样品的分析,基体归一法与内标法结果的一致性令人满意。分析德国蛇纹岩标准玻璃ATHO-G中相对误差<25%的有52个元素,<10%的有36个元素;大多数元素的相对标准偏差<10%。  相似文献   

11.
The influence of sample matrix composition, absorption behavior and laser aerosol particle size distribution on elemental fractionation in laser ablation inductively coupled plasma mass spectrometry was studied for nanosecond laser ablation at a wavelength of 266 nm. To this end, lithium tetraborate glass samples with different iron oxide contents and trace amounts of a group of 11 elements were prepared synthetically. The samples were characterized in terms of optical absorbance, melting points, trace element concentrations and homogeneity. UV/VIS spectra showed that sample absorption rises with increasing Fe2O3 content. Crater depths and time-dependent particle size distributions were measured, and ablated and transported sample volumes were estimated. Furthermore, the laser aerosol was filtered using a particle separation device and transient ICP-MS signals were acquired with and without filtering the aerosol. The results demonstrate that the amount of ablated sample is related to the absorption coefficient of the sample and therefore to the optical penetration depth of the laser beam into the sample. The higher energy densities resulting from the shorter penetration depths result in smaller average particle sizes for highly absorbing samples, which allows more efficient transport to and atomization and excitation of the ablated material within the ICP. The particle size distribution changes continuously with ablation time, and larger particle fractions occur mainly at the beginning of the ablation, which leads to particle-related fractionation processes at the beginning of the transient signal. Exceeding a critical depth to diameter ratio, laser-related elemental fractionation processes occur. Changes in the volatile to non-volatile element intensity ratio after the aerosol is filtered indicate that particle size-related enrichment processes contribute to elemental fractionation.  相似文献   

12.
Elemental fractionation poses serious difficulties in obtaining accurate concentration and isotope ratio data when using laser ablation sampling. One of the factors that control the extent of laser-induced elemental fractionation is the composition of sample carrier gas in the sample cell. This study demonstrates that the presence of small amounts of oxygen in the He carrier gas has a significant effect on elemental fractionation during the ablation of silicate (NIST 612 glass and zircon 91500) and sulphide (NiS fire assay) samples. The extent of elemental fractionation for a given amount of ablated material and concentration of oxygen in the He carrier gas was related to the volume of the plasma plume that forms above the sample surface. This indicates that an oxidation reaction takes place in the plasma plume. It has been reported that oxidation can affect the particle size distribution during laser sampling and hence change the extent of elemental fractionation. The purity of the carrier gas used in laser ablation-ICP-MS, as well as the amount of oxygen released from silicate and oxide samples during the ablation in "oxygen-free" ambient gas, is shown to contribute significantly to elemental fractionation.  相似文献   

13.
Sampling strategy is defined in this work as the interaction of a repetitively pulsed laser beam with a fixed position on a sample (single spot) or with a moving sample (scan). Analytical performance of these sampling strategies was compared by using 213 nm laser ablation ICP-MS. A geological rock (Tuff) was quantitatively analyzed based on NIST series 610-616 glass standard reference materials. Laser ablation data were compared to ICP-MS analysis of the dissolved samples. The scan strategy (50 μm/s) produced a flat, steady temporal ICP-MS response whereas the single spot strategy produced a signal that decayed with time (after 60 s). Single-spot sampling provided better accuracy and precision than the scan strategy when the first 15 s of the sampling time was eliminated from the data analysis. In addition, the single spot strategy showed less matrix dependence among the four NIST glasses.  相似文献   

14.
Jhanis J. Gonzalez 《Talanta》2007,73(3):577-582
Pulsed laser ablation (266 nm) was used to generate glass particles from two sets of standard reference materials using femtosecond (150 fs) and nanosecond (4 ns) laser pulses with identical fluences of 50 J cm−2. Scanning electron microscopy (SEM) images of the collected particles revealed that there are more and larger agglomerations of particles produced by nanosecond laser ablation.In contrast to the earlier findings for metal alloy samples, no correlation between the concentration of major elements and the median particle size was found. When the current data on glass were compared with the metal alloy data, there were clear differences in terms of particle size, crater depth, heat affected zone, and ICP-MS response. For example, glass particles were larger than metal alloy particles, the craters in glass were less deep than craters in metal alloys, and damage to the sample was less pronounced in glass compared to metal alloy samples. The femtosecond laser generated more intense ICP-MS signals compared to nanosecond laser ablation for both types of samples, although glass sample behavior was more similar between ns- and fs-laser ablation than for metal alloys.  相似文献   

15.
The fractionation of trace elements due to ablation and transport processes was quantified during Q-switched infrared laser sampling of glass and copper reference materials. Filter-trapping of the ablated product at different points in the sample introduction system showed ablation and transport sometimes caused opposing fractionation effects, leading to a confounded measure of overall (ablative + transport) fractionation. An unexpected result was the greater ablative fractionation of some elements (Au, Ag, Bi, Te in glass and Au, Be, Bi, Ni, Te in copper) at a higher laser fluence of 1.35 × 104W cm−2 than at 0.62 × 104W cm−2, which contradicted predictions from modelling studies of ablation processes. With glass, there was an inverse logarithmic relationship between the extent of ablative and overall fractionation and element oxide melting point (OMPs), with elements with OMPs < 1000°C exhibiting overall concentration increases of 20–1340%. Fractionation during transport was quantitatively important for most certified elements in copper, and for the most volatile elements (Au, Ag, Bi, Te) in glass. Elements common to both matrices showed 50–100% higher ablative fractionation in copper, possibly because of greater heat conductance away from the ablation site causing increased element volatilisation or zone refinement. These differences between matrices indicate that non-matrix-matched standardisation is likely to provide inaccurate calibration of laser ablation inductively coupled plasma-mass spectrometry analyses of at least some elements.  相似文献   

16.
The purpose of this study was to investigate the effect of microstructured material surface on cell adhesion and locomotion in real-time. ArF excimer laser direct-writing ablation was used to fabricate microwell patterns with precise control of size and spacing on glass. The influence of the ablation process parameters (laser fluence, pulse number and repetition rate) on the micromachining quality (depth, width, aspect ratio and edge effects) of the microwells was established. Human fibroblast cells, as an example of anchorage-dependent cells, were seeded onto the microstructured glass substrate and time-lapse microscopy was used to study cell adhesion and locomotion. The interaction with microstructured materials resulted in fibroblast cell repulsion and the cells exhibited a higher locomotion speed (75.77±3.36 μm/h) on the structures in comparison with plane glass control (54.01±15.53 μm/h). Further studies are needed to firmly establish the potential of microstructuring, for example, in elongating the life spans of implantable devices.  相似文献   

17.
This paper demonstrates the feasibility of performing bulk chemical analysis based on laser ablation for good lateral resolution with only nominal mass ablated per pulse. The influence of repetition rate (1–1000 Hz) and scan speed (1–200 µm/s) using a low energy (30 µJ) and a small spot size (~ 10 µm) UV-femtosecond laser beam was evaluated for chemical analysis of silica glass samples, based on laser ablation sampling and inductively coupled plasma mass spectrometry (ICP-MS). Accuracy to approximately 14% and precision of 6% relative standard deviation (RSD) were measured.  相似文献   

18.
In laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS), the properties of laser-generated aerosols, such as size and composition, are crucial for matrix-independent quantification. In this study, the aerosol particle morphology and elemental composition generated by two state-of-the-art laser systems (ArF excimer nanosecond-UV laser and Ti:sapphire femtosecond-IR laser) were investigated by electron microscopic techniques. Electrostatic sampling of the aerosols directly onto transmission electron microscopy (TEM) grids allowed us to study the morphology and elemental composition of the aerosols using TEM and TEM–EDX (energy dispersive X-ray spectroscopy) analyses, respectively. The results of the electron microscopic studies were finally compared to the LA-ICPMS signals of the main matrix components. The investigations were carried out for non-conducting materials (glass and zircon), metallic samples (steel and brass) and semiconductors (sulfides). The studies confirm that ns-LA-generated aerosols dominantly consist of nanoparticle agglomerates while conducting samples additionally contain larger spherical particles (diameter typically 50 to 500 nm). In contrast to ns-laser ablation, fs-LA-generated aerosols consist of a mixture of spherical particles and nanoparticle agglomerates for all investigated samples. Surprisingly, the differences in elemental composition between nanoparticle agglomerates and spherical particles produced with fs-LA were much more pronounced than in the case of ns-LA, especially for zircon (Si/Zr fractionation) and brass (Cu/Zn fractionation). These observations indicate different ablation and particle formation mechanisms for ns- and fs-LA. The particle growth mechanism for ns-LA is most likely a gas-to-particle conversion followed by agglomeration and additional hydrodynamic sputtering for conducting samples. On the other hand, phase explosion is assumed to be responsible for the mixture of large spherical particles and nanoparticle agglomerates as found for fs-LA-generated aerosols. Based on these mechanisms, the overall temporal elemental fractionation effects in ns-LA-ICPMS seem to occur mainly during the ablation. This effect was not observed for fs-LA-ICPMS despite the element separation into different particle fractions, which, on the other hand, could induce severe ICP-induced fractionation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号