首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
智能可穿戴设备拥有便捷、智能和实时等诸多特点.通过可穿戴设备进行检测分析,并将数据进行实时传输,可实时监测生命体征和运动情况等重要信息,对人体进行监测并为健康状况提供数据支持.根据可穿戴设备近年的发展,本文综述了可穿戴设备的穿戴方式、常用材料以及不同的传感方式,并对其在人体生命体征检测方面的应用做了介绍,最后对其面临的...  相似文献   

2.
随着社会经济发展,人们越来越重视身体健康,对医疗设备的智能化、便携性、准确性要求越来越高。在此背景下,可穿戴生物传感器的市场需求不断提升。智能纤维和纺织品能够满足透气性和可穿戴性的要求,应用在可穿戴生物传感器中能够实时监测人们的身体状况,包括脉搏、呼吸、肢体运动等生命体征监测,汗液、唾液等成分分析和呼出物的检测。相比于传统的生物传感器,基于智能纤维和纺织品的可穿戴生物传感器可用于现场即时监测,从疾病预防、改善临床结果和生活质量到提高生产力、减轻医疗负担和降低医疗成本都发挥着重要作用。在这里,本文主要介绍了近几年智能纤维和纺织品在可穿戴生物传感器中的应用,按照生命体征监测、体液分析和呼出物检测这三个方面,对其传感策略例如比色传感、荧光传感、压电式传感等进行介绍。最后,我们对智能纤维与纺织品在可穿戴生物传感器中的应用状况以及面临的问题进行总结,并对其在可穿戴生物传感器的未来发展进行展望。  相似文献   

3.
可穿戴光谱传感器是一种由柔性衬底、传感及检测分析单元组成的一体化智能器件,能够无创或微创地对汗液、经皮气体、伤口分泌物、皮下间质液、泪液、呼出气和唾液等人体生理体液中的化学物质进行快速检测和实时跟踪,在药物分析、疾病诊断及健康监测等领域中具有重要意义。本文总结了2016年以来可穿戴比色、荧光及表面增强拉曼散射传感器的研究概况,基于可穿戴光谱传感器的组成,综述了表皮、眼部及口部形式的可穿戴光谱传感器的研究进展,并分析了可穿戴光谱传感器未来发展面临的挑战及机遇,以期为可穿戴光谱传感器的设计和开发提供参考。  相似文献   

4.
随着人们生活质量与对可穿戴监测设备需求的提高以及物联网、人工智能和人机交互等科技水平的发展,能够对人体生命体征信号采集、转化与识别的可穿戴柔性电子装置成为连接智能生物与非智能机械装置的桥梁. 可穿戴柔性电子器件对人体生命体征信号的采集包括人体脉搏、温度、皮肤应变、呼吸和心跳等指标. 本文总结概述了近年来可穿戴柔性传感器对人体生命信号采集的现状以及存在的问题和挑战,并对可穿戴柔性供能器件做了简要的总结和展望.  相似文献   

5.
酶生物燃料电池(Enzymatic biofuel cells,EBFCs)具有高专一性和催化性能,可催化与氧化还原反应有关的燃料并获得电能.可用的生物燃料,如葡萄糖、乳酸和丙酮酸盐,可以从汗液、泪液和血液中提取,因而以体液为燃料的EBFCs在可植入式或可穿戴式设备中具有良好的应用前景.采用生物电催化机理对酶生物燃料电池在体液发电中的应用进行了研究,以及对可植入式或可穿戴式生物燃料电池的主要挑战和未来的前景进行了展望.  相似文献   

6.
可穿戴电化学传感器件是一种可直接穿戴在身体特定部位、甚至植入用户体内的柔性电化学传感器。其具有简易性、便携性、灵活性等特点,可实时电化学监测与跟踪分析待测物,被广泛用于医疗保健、人体健康和环境监测等领域。该综述概括了可穿戴电化学传感器件的硬件设计与研制,及其在汗液检测、神经化学监测、现场分析检测(POCT)中的应用,总结和展望了可穿戴电化学传感器件的未来发展趋势,以期为可穿戴电化学传感领域的进一步发展提供参考。  相似文献   

7.
构建了一种具有自动形成细胞培养阵列和多步骤灵活操作特点的开放式微流控芯片。此芯片具有3层复合式结构:底层为微通道贯穿的细胞培养池阵列,顶层是开放式培养池,二者之间为一层纳米孔薄膜。纳米孔薄膜具有"透气阻水"的特性,既起到止流阀作用实现液体自动分配,又允许跨膜扩散,模拟血管内皮层扩散屏障结构。结合移液工作站,开放式微流控芯片可以完成细胞换液、药物处理和细胞活力测试等一系列分析步骤。本研究以乳腺癌细胞为模型,在芯片上90 s内可构建包含三维细胞培养和仿真血管内皮的10×10肿瘤组织微阵列。形态学和免疫组织化学检测证实了芯片肿瘤组织的仿真效果。抗肿瘤药物测试结果表明,这种开放式微流控组织阵列芯片允许在仿真条件下进行包含复杂操作步骤的细胞实验,是细胞研究的有利工具。  相似文献   

8.
江禹  马俊林  朱楠 《化学通报》2020,83(4):325-333
实现对人体的健康监测和慢性病监测是包括材料科学、信息技术、电子技术、分析化学等科学领域在内的世界前沿课题。通过连续获取温度、压力、应力等物理信号来实现对人体活动情况和心率、血压、脑电图、心电图等实时监测的可穿戴设备已实现商业化,但连续监测人体体液、呼出气中的各类化学物质的可穿戴传感器仍面临许多问题,比如传感器的柔韧性、灵敏度、准确性以及与人体皮肤的贴合性等。针对这些问题,本文以柔性印刷技术为出发点,综述了各类柔性基底在电化学传感器/生物传感器领域的应用,同时对可穿戴传感器的发展方向提出了建议。  相似文献   

9.
微流控芯片操纵传输及实时监测单细胞量子释放   总被引:2,自引:0,他引:2  
微流控芯片技术用于细胞生化分析已引起了广泛关注.Harrison等首次在微流控芯片上对细胞群体进行操纵、传输及反应.yang等在微流控芯片上操纵细胞群体的排列,并用荧光检测细胞群体摄取钙的反应.至今还未见到微流控芯片对单个细胞进行操纵传输、定位及实时监测的报道.单细胞受激释放的监测对探索生物体神经传导具有重要意义.  相似文献   

10.
发展了一种以微流控芯片为平台的药物诱导细胞凋亡的新方法.选择HeLa细胞为对象,通过浓度梯度芯片形成稳定的药物浓度梯度,诱导HeLa细胞凋亡,利用荧光能量共振转移(fluorescence resonance energy transfer,FRET)成像系统进行实时监测,分析细胞对不同浓度化合物的毒性反应.结果表明,细胞在顺铂诱导下发生明显的起泡和皱缩,FRET比率值逐渐降低,在药物浓度梯度作用下,芯片每个通道内细胞呈现不同程度的凋亡.该方法实现了药物浓度梯度诱导细胞凋亡的实时监测和定量分析,为抗肿瘤药物评价和高通量药物筛选提供了新的手段.  相似文献   

11.
Polymer particles are key materials in various biomedical applications, including drug delivery, cellular immunity, cell capture, biochip, etc. Droplets produced by microfluidics have been widely applied as templates for the fabrication of polymer particles with controllable sizes and narrow size distributions. Compared to smooth polymer particles, those with surface microstructures (e.g., tentacles, bubbles, wrinkles and pits) are more attractive due to their increased surface area and biomimetic structural characteristics. In this review, we summarized representative methods for the preparation of monodispersed polymer particles with various surface microstructures based on droplet microfluidics, as well as their typical bioapplications in drug delivery, cellular immunity and cell capture. Finally, the current challenges and further development in this research area are discussed.  相似文献   

12.
Wearable sensing devices have transformed the hourly analysis of events such as body signals and environmental risks into real-time monitoring in minutes or seconds. Wearable sensors have facilitated the ability to obtain useful data by monitoring the physiological parameters and activities of an aided and a healthy individual. Wearable devices employ detectable biomarkers in the human body, such as in tears, saliva, interstitial fluid, sweat, and so on. These can deliver relevant information on human health, online activity monitoring, and therapeutic treatments. This section outlines the significance of sample types and associated biomarkers as indicators in the development and manufacturing of wearable biosensors. We have emphasized the most recent advances of wearables based on skin-like and textile, giving attention to personalized health monitoring to record signals of motion and physiological and body fluid investigation. Furthermore, this review categorizes wearable biosensors based on the sensing mechanism, electrochemical, optical, and mechanical. Additionally, the recent wearables related to the detection of the newly havoc-causing pandemic, COVID-19, and the future perspective for the development of much more advanced and potent wearable biosensors have been highlighted. The final section highlights unmet difficulties and gaps in wearable sensors in personalized therapy.  相似文献   

13.
Microfluidics has been widely used in the life science, analytical chemistry, environmental science and other fields in the recent years. Traditional microfluidics systems usually use a highly integrated system with multiple components for handling the fluid in the micro/nano scale. The design and fabrication of integrated microfluidics usually require highly sophisticated instruments and operation professionals. With the experience inherited from integrated circuit and micro electro mechanical system, the modular microfluidics system has been experienced a rapid development in recent years. Modular microfluidics system is a combination of a series of individual modules to achieve complicated liquid handling functions. Compared with conventional microfluidics approach, the modular microfluidics method has the potential in significantly reducing the fabrication cost by using the massive production of single chip, besides, it is easy to be operated, and the user can easily assembly the modules to obtain their customized microfluidics system. The concept of modular microfluidics also indicates the future development path for the standardization of microfluidics system and also provides a promising approach for the industrial massive production of microfluidics. However, the study of modular microfluidics is still in an early stage. Although lots of studies have been conducted with varies materials, fabrication methods and interface technologies, issues like modular interface still restricted the further development of microfluidics. In this paper, a comprehensive review for the latest research on the modular microfluidics and applications in biological and medical fields is provided, and the future research trends of modular microfluidics is also discussed.  相似文献   

14.
微流控液滴技术及其应用的研究进展   总被引:1,自引:0,他引:1  
微液滴具有体积小、比表面积大,速度快、通量高,大小均匀、体系封闭,内部稳定等特性,在药物控释、病毒检测、颗粒材料合成、催化剂等领域中均有重要应用.微流控技术的发展为微液滴生成中实现尺寸规格、结构形貌和功能特性等的可控设计和精确操控提供了全新平台.本文概述了微流控液滴技术的基本原理、液滴生成方式及其基本操控,比较分析了微液滴的传统制备法与微流控合成法的异同,介绍了近年来微流控液滴技术在功能材料合成、生物医学和食品加工等领域中的研究新进展,探讨并展望了微流控液滴技术的潜在价值和未来发展方向.  相似文献   

15.
This article is a brief overview of the emerging microfluidic systems called surface‐tension‐confined microfluidic (STCM) devices. STCM devices utilize surface energy that can control the movement of fluid droplets. Unlike conventional poly(dimethylsiloxane)‐based microfluidics which confine the movement of fluids by three‐dimensional (3D) microchannels, STCM systems provide two‐dimensional (2D) platforms for microfluidics. A variety of STCM devices have been prepared by various micro‐/nanofabrication strategies. Advantages of STCM devices over conventional microfluidics are significant reduction of energy consumption during device operation, facile introduction of fluids onto 2D microchannels without the use of a micropump, increased flow rate in a special type of STCM device, among others. Thus, STCM devices can be excellent alternatives for certain areas in microfluidics. In this Minireview, fabrication methods, operating modes, and applications of STCM devices are introduced.  相似文献   

16.
Kim J  Hwang I  Britain D  Chung TD  Sun Y  Kim DH 《Lab on a chip》2011,11(23):3941-3948
Recent advances in microfluidics have created new and exciting prospects for gene delivery and therapy. The micro-scaled environment within microfluidic systems enables precise control and optimization of multiple processes and techniques used in gene transfection and the production of gene and drug transporters. Traditional non-viral gene transfection methods, such as electroporation, microinjection and optical gene transfection, are improved from the use of innovative microfluidic systems. Additionally, microfluidic systems have also made the production of many viral and non-viral vectors controlled, automated, and reproducible. In summary, the development and application of microfluidic systems are producing increased efficiency in gene delivery and promise improved gene therapy results.  相似文献   

17.
The metabolic disorder of glucose in human body will cause diseases such as diabetes and hyperglycemia.Hence the determination of glucose content is very important in clinic diagnosing.In recent years,researchers have proposed various non-invasive wearable sensors for rapid and real-time glucose monitoring from human body fluids.Unlike those reviews which discussed performances,detection environments or substrates of the wearable glucose sensor,this review focuses on the sensing nanomaterials since they are the key elements of most wearable glucose sensors.The sensing nanomaterials such as carbon,metals,and conductive polymers are summarized in detail.And also the structural characteristics of different sensing nanomaterials and the corresponding wearable glucose sensors are highlighted.Finally,we prospect the future development requirements of sensing nanomaterials for wearable glucose sensors.This review would give some insights to the further development of wearable glucose sensors and the modern medical treatment.  相似文献   

18.
In the last decades, the basic techniques of microfluidics for the study of cells such as cell culture, cell separation, and cell lysis, have been well developed. Based on cell handling techniques, microfluidics has been widely applied in the field of PCR (Polymerase Chain Reaction), immunoassays, organ-on-chip, stem cell research, and analysis and identification of circulating tumor cells. As a major step in drug discovery, high-throughput screening allows rapid analysis of thousands of chemical, biochemical, genetic or pharmacological tests in parallel. In this review, we summarize the application of microfluidics in cell-based high throughput screening. The screening methods mentioned in this paper include approaches using the perfusion flow mode, the droplet mode, and the microarray mode. We also discuss the future development of microfluidic based high throughput screening platform for drug discovery.  相似文献   

19.
多肽和聚多肽作为一类新型的生物医用材料,由于其具有良好的生物活性、生物可降解性以及生物相容性而备受瞩目.将具有特殊生理功能的多肽作为基因或药物载体、或用于药物修饰等,可以提高基因转染效率,增强药物的靶向治疗效果,降低药物的毒副作用.本文综述了近年来多肽及聚多肽材料在这些生物医学领域的应用及进展,对部分活性肽的作用机制和...  相似文献   

20.
Lab on a chip (LOC) technology is a promising miniaturization approach. The feature that it significantly reduced sample consumption makes great sense in analytical and bioanalytical chemistry. Since the start of LOC technology, much attention has been focused on continuous flow microfluidic systems. At the turn of the century, droplet microfluidics, which was also termed segmented flow microfluidics, was introduced. Droplet microfluidics employs two immiscible phases to form discrete droplets, which are ideal vessels with confined volume, restricted dispersion, limited cross-contamination, and high surface area. Due to these unique features, droplet microfluidics proves to be a versatile tool in microscale sample handling. This article reviews the utility of droplet microfluidics in microanalytical systems with an emphasize on separation science, including sample encapsulation at ultra-small volume, compartmentalization of separation bands, isolation of droplet contents, and related detection techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号