首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
微流控液滴技术:微液滴生成与操控   总被引:1,自引:0,他引:1  
陈九生  蒋稼欢 《分析化学》2012,40(8):1293-1300
微液滴技术因具有高通量两相分割分离能力,吸引众多不同领域研究者的关注.本文回顾了微流控液滴技术领域的一些基本技术思路,涉及微液滴的流控生成方法,包括水动力法、电动法、气动法、光控法等,以及液滴生成后的操控技术,如液滴定向位移、融合、裂分、混合、分选、捕获等,同时对这些方法作了简要评述.  相似文献   

2.
一种基于介质上电润湿效应的免疫检测芯片研究   总被引:1,自引:0,他引:1  
利用微机械加工技术,在ITO玻璃上设计制作了基于介质上电润湿效应的以离散液滴为对象的免疫检测芯片,对芯片的液滴驱动特性、免疫反应参数进行了测试,并对小鼠IgG和羊抗鼠IgG-HRP进行了初步的免疫测试.研究结果表明,在电压<100 V的时候,接触角测量值基本上和预测曲线吻合,在>100 V的情况下出现了接触角饱和现象,在芯片上实现了液滴操纵,120 V时得到最大平均速度为3.75 mm/s;该芯片可以实现免疫反应检测,所需样品体积为0.5 μL,检测时间约为20 min,对于羊抗鼠IgG-HRP实验系统的检测范围为0.1~20 mg/L.  相似文献   

3.
微流控液滴技术及其应用的研究进展   总被引:1,自引:0,他引:1  
微液滴具有体积小、比表面积大,速度快、通量高,大小均匀、体系封闭,内部稳定等特性,在药物控释、病毒检测、颗粒材料合成、催化剂等领域中均有重要应用.微流控技术的发展为微液滴生成中实现尺寸规格、结构形貌和功能特性等的可控设计和精确操控提供了全新平台.本文概述了微流控液滴技术的基本原理、液滴生成方式及其基本操控,比较分析了微液滴的传统制备法与微流控合成法的异同,介绍了近年来微流控液滴技术在功能材料合成、生物医学和食品加工等领域中的研究新进展,探讨并展望了微流控液滴技术的潜在价值和未来发展方向.  相似文献   

4.
基于微流体脉冲驱动控制技术搭建了电化学微流控芯片的制备系统.首先将纳米银墨水和甘油溶液分别微喷射到玻璃基底表面形成微电极图形和微流道液体阳模图形;然后分别进行烧结和聚二甲基硅氧烷(PDMS)模塑工艺制得微电极和微流道;最后将微电极和微流道键合形成电化学微流控芯片.研究了系统参量对液滴产生的影响以及液滴直径和重叠率对液滴成线的影响,制得的微电极最小线宽为45 μm、厚度为2.2 μm、电阻率为5.2 μΩ·cm,制得的微流道最小线宽为35 μm,流道表面光滑.采用制得的电化学微流控芯片进行了葡萄糖浓度的电化学流动检测.结果表明,葡萄糖溶液的浓度与响应电流具有较高的线性关系,可对一定浓度范围内的葡萄糖溶液进行定量检测.基于微流体脉冲驱动控制技术的电化学微流控芯片制备方法具有微喷射精度高、重复性好,制备系统结构简单、成本低廉等优点,可用于生化分析、生物传感器等领域的芯片制备.  相似文献   

5.
在一系列温度下通过对水与丁二酸双(2-乙基己基)酯磺酸钠(AOT)摩尔比为12、不同浓度的AOT/水/甲苯微乳液进行静态光散射测量, 获得液滴的相对分子质量、AOT的聚集数、液滴半径和不同温度下的第二维里系数. 利用第二维里系数与温度的关系获得液滴的相互作用焓和熵, 分别为-4.03×104 J·mol-1和-139.8 J·mol-1·K-1, 说明AOT/水/甲苯微乳液滴间表面活性剂疏水链相互交叉渗透的能量变化为负值, 交叉渗透为焓驱动.  相似文献   

6.
李清  侯丽雅  章维一 《分析化学》2011,39(6):882-885
基于微流体数字化微喷射技术进行了单细胞微胶囊制备实验,探究了单细胞微胶囊的制备条件和粒径变化规律.结果显示,当微喷嘴的内径及液体的脉冲流动步长小于2倍的细胞最小粒径时,可实现单细胞微胶囊的制备.单细胞微胶囊的平均粒径随着微喷嘴内径的增大而线性增大,可通过改变微喷嘴内径调节单细胞微胶囊的粒径大小.以200μm微喷嘴制备猪...  相似文献   

7.
超疏水表面上冷凝液滴发生弹跳的机制与条件分析   总被引:1,自引:0,他引:1  
使用液滴合并前后的体积和表面自由能守恒作为两个限制条件,确定了合并液滴的初始形状,即为偏离平衡态的亚稳态液滴,具有缩小其底半径而向平衡态液滴转变的推动力.进而分析了液滴变形过程中的推动力和三相线(TPCL)上的滞后阻力,建立了液滴变形的动态方程并进行了差分求解.如果液滴能够变形至底半径为0mm的状态,则根据该状态下液滴重心上移的速度确定液滴的弹跳高度.不同表面上冷凝液滴合并后的变形行为的计算结果表明,光滑表面上的液滴合并后,液滴只能发生有限的变形,一般都在达到平衡态之前就停止了变形,因此冷凝液滴不会发生弹跳;粗糙表面上的Wenzel态液滴的三相线上的滞后阻力更大,因而液滴更难以变形和弹跳;具有微纳二级结构表面上只润湿微米结构,但不润湿纳米结构的部分Wenzel态液滴能够变形至Cassie态,但没有明显的弹跳;只有在纳米或微纳二级结构表面上的较小Cassie态液滴合并后,液滴易于变形至底半径为0mm的状态并发生弹跳.因此,Cassie态合并液滴处于亚稳态,并且其三相线上的移动阻力很小,是导致冷凝液滴弹跳的关键因素.  相似文献   

8.
随着生物分析技术和高通量筛选技术的发展,生命科学领域的试剂用量已减小至纳升乃至皮升水平,为实现高精度的微量试剂分配,研制了基于微流体脉冲驱动控制技术的双通道微量试剂分配系统,以甘油溶液为分配试剂,研究了试剂粘度、微喷嘴出口内径、驱动频率和电压幅值对分配量的影响,在系统参量驱动电压为70 V、驱动频率为4 Hz、微喷嘴出口内径为100μm的条件下,按照不同比例分配Na2HPO4-KH2PO4溶液,进行混合反应实验,制备具有pH值梯度的3×3磷酸盐缓冲液微阵列,并加入pH值指示剂,检测混合后溶液的酸碱性。结果表明,所制备的pH梯度微阵列样点直径相对标准偏差(n=9)为0.8%,样点反应充分、颜色均匀且梯度变化明显。基于微流体脉冲驱动控制技术的微量试剂分配方法分配精度较高、重复性好,能够实现对不同粘度试剂的自动化、并行及微量(pL级)分配,无需独立的"反应池"即可实现多种试剂的微量配比及反应。  相似文献   

9.
海藻酸钙凝胶微球粒径的理论计算与实验   总被引:1,自引:0,他引:1  
通过静电液滴发生器制备海藻酸钙凝胶微球,通过理论推导得到了微球粒径的计算公式.理论计算的结果表明,凝胶微球粒径的大小取决于静电压、电极距离、针头内径大小、注射器流速、海藻酸钠粘度和表面张力以及凝胶化体积收缩系数.理论计算结果与实验结果吻合得相当好.  相似文献   

10.
贾军  赵轶雯  魏寒  沈青 《广州化学》2012,37(3):67-77
综述了微流体技术合成聚合物颗粒的研究进展,包括基于液滴的合成、用流动刻蚀的技术合成及在设备中交替组装成复杂颗粒等合成组装技术,介绍了由此合成的一些不同形状和结构的颗粒及其性能,其中包括具备低密度和特殊表面性能的多孔性颗粒、可以通过加入功能物质制备出的性能优异的复合颗粒、拥有层状结构及多重性能的多功能颗粒、基础的球形颗粒以及通过微流体设备制备的非球形颗粒。  相似文献   

11.
We report the association of inkjet and electrospray ionization MS to detect picoliter droplet, where the liquid volume and its position onto the tip can be precisely controlled to form ultrafine droplets for successive ionization of the analyte. Single rectangle pulse was applied to piezoelectric device on inkjet microchip for the ejection of each picoliter droplet, and it was controlled by a computer. The voltage and width of driving pulse for the inkjet were optimized to make reproducible ejection of the solvent with low viscosity. The volume of each droplet was about 600 pl, and a trigger of 10 droplets was selected as the best inlet mode taking relative standard derivation of the droplets into consideration. The target substrate used with high voltage to form ionization was graphite, after several attempts with some materials. High‐speed camera was used to capture the breaking‐up process of a droplet. The distance between the inkjet nozzle and the tip was set at 2 cm to avoid short circuit. The influences on the mass intensity of the diameter of the tip, the volume and the concentration of the sample were examined. The tip with a small diameter performed greater intensity, and the limit of detection decreased, whereas the small volume of liquid played high ionization efficiency. Linear regression in the range between 1 and 200 ppm for caffeine was conducted, where internal standard theobromine was used. Some real samples were also detected with the instrument. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
For drop-on-demand (DOD) inkjet printing, stable and single ink droplet formation without satellite dots is the key to improve the print quality. The formation of stable and single droplet is influenced by filament break up and the polymer chain's coil-stretch transition behavior. In this paper, the droplet formation behaviors of polyfluorene (PFO) ink at various driving voltages (V), polymer chain's coil-stretch transition mechanism and its effects on single ink droplet formation are investigated. It indicates that when 58 < V ≤ 63 V, a single and stable droplet is formed with a pulse time of 38.5 μs. At this stage, the Weissenberg number (Wi) < 0.5, the PFO molecular chain is coiled to guarantee stable and single droplets. When V > 63 V, Wi > 0.5, the PFO molecular chain is stretched because of the high hydrodynamic forces, resulting unwanted satellite droplets. When 55 < V ≤ 58 V, the droplet shrinks into the nozzle, which indicates that the kinetic energy supplied by the deformation of the piezoelectric transducer isn't enough to force the droplet to be jetted from the nozzle.  相似文献   

13.
To fabricate uniform nano/microsized beads using the electrospraying process, poly(methylmethacrylate) (PMMA) polymer solution is ejected from a reservoir tip to form suspended droplets using the force of a controllable syringe pump. Using a newly designed electrode connected to the nozzle and a field-controllable target electrode, we obtained uniform microsized beads of the solution. Moreover, by using a two-axis x-y stage, we could obtain selective coverage of microsized PMMA droplets on an insulating PET film. To clarify the effect of the applied field conditions, the droplets deposited on a dielectric substrate were characterized under an optical microscope.  相似文献   

14.
When double emulsion droplets flow through a tapered nozzle, the droplets may break up and cause the core to be released. We model the system on the basis of the capillary instability and show that a droplet will not break up when the tilt angle of the nozzle is larger than 9°. For smaller tilt angles, whether the droplet breaks up also depends on the diameter ratio of the core of the droplet to the orifice of the nozzle. We verified this mechanism by experiments. The ideas are useful for the design of nozzles not only to break droplets for controlled release but also to prevent the droplet from rupturing in applications requiring the reinjection of an emulsion.  相似文献   

15.
《中国化学快报》2020,31(12):3216-3220
For drop-on-demand (DOD) inkjet printing, stable and single ink droplet formation without satellite dots is the key to improve the print quality. The formation of stable and single droplet is influenced by filament break up and the polymer chain’s coil–stretch transition behavior. In this paper, the droplet formation behaviors of polyfluorene (PFO) ink at various driving voltages (V), polymer chain’s coil–stretch transition mechanism and its effects on single ink droplet formation are investigated. It indicates that when 58 < V ≤ 63 V, a single and stable droplet is formed with a pulse time of 38.5 μs. At this stage, the Weissenberg number (Wi) < 0.5, the PFO molecular chain is coiled to guarantee stable and single droplets. When V > 63 V, Wi > 0.5, the PFO molecular chain is stretched because of the high hydrodynamic forces, resulting unwanted satellite droplets. When 55 < V ≤ 58 V, the droplet shrinks into the nozzle, which indicates that the kinetic energy supplied by the deformation of the piezoelectric transducer isn't enough to force the droplet to be jetted from the nozzle.  相似文献   

16.
In this work, a vibrating tip spray ionization source was developed for direct mass spectrometric analysis of raw samples under voltage‐free condition. A solid tip was mounted on a vibrator, and the solid tip was placed on the front of MS inlet. Liquid, viscous, and bulk solid samples could be directly loaded on the tip‐end surface, and then a drop of solvent at microliter level was subsequently loaded on the tip for dissolution and extraction of analytes, and a vibrator was then started to atomize and ionize the analytes under ambient condition. We demonstrated vibrating tip spray mass spectrometry in various applications, including food safety, pharmaceutical analysis, and forensic science. Furthermore, in situ analysis of biological tissues and in vivo analysis of living plants were conveniently performed, due to voltage‐free. Different vibration frequencies and solvent compositions were investigated. The analytical performances, including sensitivity, reproducibility, and linear range, were investigated. The ionization process and mechanism were also discussed in this work.  相似文献   

17.
Micro‐structure patterned substrates attract our attention due to the special and programmable wettabilities. The interaction between the liquid and micro/nano structures gives rise to controllable spreading and thus evaporation. For exploration of the application versatility, the introduction of nanoparticles in liquid droplet results in interaction among particles, liquid and microstructures. In addition, temperature of the substrates strongly affects the spreading of the contact line and the evaporative property. The evaporation of sessile droplets of nanofluids on a micro‐grooved solid surface is investigated in terms of liquid and surface properties. The patterned nickel surface used in the experiments is designed and fabricated with circular and rectangular shaped pillars whose size ratios between interval and pillars is fixed at 5. The behavior is firstly compared between nanofluid and pure liquid on substrates at room temperature. For pure water droplet, the drying time is relatively longer due to the receding of contact line which slows down the liquid evaporation. Higher concentrations of nanoparticles tend to increase the total evaporation time. With varying concentrations of graphite at nano scale from 0.02% to 0.18% with an interval at 0.04% in water droplets and the heating temperature from 22 to 85°C, the wetting and evaporation of the sessile droplets are systematically studied with discussion on the impact parameters and the resulted liquid dynamics as well as the stain. The interaction among the phases together with the heating strongly affects the internal circulation inside the droplet, the evaporative rate and the pattern of particles deposition.  相似文献   

18.
A challenging task in measuring droplet size is the ability to perform in-situ droplet size distribution analysis on multiphase fluids in their native states in the undisturbed environment. In this study, an inline two-dimensional low cost–high accuracy technique is presented for continuous measurement of spherical or non-spherical droplets in emulsions using image processing. The characteristic of the droplets is evaluated and the describe drop size distributions in different ranges is determined. This droplet size determination algorithm is based on both cellular neural networks and linear matrix inequality. Our main work focuses on the performance of the proposed methodology for exploring the dynamical evolution of such droplet size distributions by in-situ measurement. Moreover, the results were compared with those obtained using laser diffraction analyzer technique. It was proved that this method can efficiently characterize the quality of dispersed phase by determining droplet size distribution.  相似文献   

19.
We reported a manually operated static droplet array (SDA)-based device for the synthesis of nonspherical microparticles with different shapes. The improved SDA structure and reversible bonding between poly(dimethylsiloxane) (PDMS) were used in the device for the large-scale synthesis and rapid extraction of nonspherical microparticles. To understand the device physics, the effects of flow rate, SDA well size, and shape on droplet generation performances were explored. The results indicated that droplet generation in SDA structures was insensitive to the flow rate, and monodisperse droplets were generated by the SDA-based device through manually pushing the syringe. Finally, we integrated four kinds of SDA structures in one device and successfully realized the synthesis and extraction of nonspherical microparticles with different shapes and materials. Our SDA-based device offers numerous advantages, such as simple manual operation, low equipment cost, controllable microparticle shapes and sizes, and large-scale production. Thus, it holds the potential to be used as a flexible tool for the production of nonspherical microparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号