首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
α-Al2O3纳米粒子对Co-Ni合金异常共沉积电化学行为的影响   总被引:1,自引:0,他引:1  
武刚  李宁  周德瑞  徐柏庆 《物理化学学报》2004,20(10):1226-1232
为了研究在电化学复合共沉积过程中,惰性纳米粒子和金属离子、电极表面的相互作用,以及由此产生的对合金电化学共沉积行为的影响.本文从两个吸附过程出发: 电解液中的金属离子和H+在纳米粒子表面的吸附;纳米粒子迁移到阴极表面,在电极表面的吸附.采用Zeta电势和稳态极化以及电化学交流阻抗(EIS)研究了纳米Al2O3粒子和电解液中的金属离子,和电极表面的相互作用,进而分析了纳米粒子对Co2+和Ni2+还原沉积的影响规律.通过对阻抗数据的拟合,讨论了Al2O3纳米粒子对等效电路中各物理参数的影响.在H+和不同金属离子在纳米粒子上发生竞争吸附的基础上,提出了纳米粒子和合金共沉积的可能反应历程.  相似文献   

2.
姜炜  黄蕾  张玉忠 《分析化学》2011,39(7):1038-1042
构建了基于金纳米粒子/聚阿魏酸/多壁碳纳米管(AuNPs/PFA/MWCNTs)修饰电极的DNA计时库仑法生物传感器.利用循环伏安技术在多壁碳管修饰的玻碳电极表面上聚合一层阿魏酸,在恒电位条件下,在阿魏酸表面沉积金纳米粒子,巯基DNA作为探针通过金硫键固定在金纳米粒子表面.电化学交流阻抗技术(EIS)与扫描电镜(SEM...  相似文献   

3.
张大峰  刁鹏  刘鹏  王静懿  项民  张琦 《化学学报》2007,65(21):2370-2376
研究了组装在Au, Pt电极表面的金纳米粒子对CO的电化学催化氧化行为, 首次在实验上观察到较大粒径金纳米粒子(粒径>10 nm)对CO的电催化氧化活性. 考察了金粒子表面金氧化物对粒子电催化活性的影响, 发现表面金氧化物的形成是金纳米粒子对CO具有电催化氧化活性的前提. 对于相同粒径的金纳米粒子, 随着粒子表面金氧化物量的增加,催化活性增大.  相似文献   

4.
张亚  邢艳  焦玉荣 《分析试验室》2021,40(3):270-274
将银纳米粒子(AgNPs)电沉积在碳纳米纤维(CNFs)修饰玻碳电极表面制备纳米银/碳纳米纤维修饰玻碳电极(AgNPs/CNFs/GCE).采用扫描电镜考察其表面形态,在K3[Fe(CN)6]-K4[Fe(CN)6]体系中用循环伏安法和电化学阻抗法研究AgNPs/CNFs/GCE的电化学行为.采用循环伏安法和方波伏安法...  相似文献   

5.
Ti基纳米TiO_2-CNT-Pt复合电极制备、表征及电化学性能   总被引:3,自引:0,他引:3  
以电合成前驱体Ti(OEt)4直接水解法和电化学扫描电沉积法制备Ti基纳米TiO2-CNT-Pt(Ti/nanoTiO2-CNT-Pt)复合电极.透射电镜(TEM)和X射线衍射(XRD)测试表明,锐钛矿型纳米TiO2粒子(粒径5~10nm)和碳纳米管(CNT)结合形成网状结构,Pt纳米粒子(平均粒径9nm)均匀地分散在纳米TiO2-CNT复合膜表面.循环伏安及计时电流测试表明,Ti/nanoTiO2-CNT-Pt复合电极具有高活性表面,对甲醇的电化学氧化具有高催化活性和稳定性,Pt载量为0.32mg/cm2时,常温常压下甲醇氧化峰电流达到480mA/cm2.  相似文献   

6.
郑国祥  邵勇  徐斌 《化学学报》2006,64(8):733-737
用苯胺作还原剂还原氯金酸合成了金纳米结构. TEM实验表明, 苯胺还原氯金酸能生成苯胺齐聚物或其聚合物包裹的金球形纳米粒子. XPS分析表明, 金纳米粒子包覆的聚合物层带正电荷. 该纳米粒子能用于电极表面纳米结构组装及氧化还原性的生物大分子的电化学研究, 实现了超氧化物歧化酶(SOD)在这种带正电荷的金纳米粒子表面的直接电子转移.  相似文献   

7.
基于自组装技术在玻碳电极表面构筑了肌红蛋白-纳米氧化铝模板-金胶复合组装体,研究了该纳米复合组装体的电化学性质。循环伏安和电化学交流阻抗实验结果表明,该纳米组装体结构致密稳定,固定在组装体中的肌红蛋白在0.2 mol/L醋酸-醋酸钠缓冲液中于-0.21 V(vs.Ag/AgC l)附近有一对准可逆的氧化还原峰,为肌红蛋白血红素辅基Fe(Ⅲ)/Fe(Ⅱ)的特征峰。带负电荷的金纳米粒子能为蛋白质分子提供具有生物兼容性的微环境,从而有利于其电子传递反应的发生。  相似文献   

8.
姜艳霞  廖宏刚  陈卫  孙世刚 《电化学》2004,10(2):127-132
运用CO分子探针红外光谱研究不同尺度和分散状态的钯纳米粒子的红外光学性能.结果表明,粒子尺度为6.6nm分散的球型钯纳米粒子(Pdn)和粒子尺度为100~150nm分散的立方体型钯纳米粒子(Pdncube)均给出两个不同吸附方式的桥式CO红外谱峰,其吸收峰位置约在1970cm-1和1910cm-1.将Pdn引入到电极表面后,通过界面电化学诱导使之形成团聚体(Pdnag),其红外光学性能发生显著变化,表现为随着界面电化学诱导时间的增加,其1970cm-1处的谱峰方向从正常转为异常.本研究进一步证明红外谱峰方向的倒反是由于粒子间的相互作用引起的.  相似文献   

9.
纳米金粒子,因其良好的光学、电学特性和生物相容性,受到分析化学工作者的极大关注.本研究利用4,4'-二巯基二苯硫醚(DMDPSE)中两端巯基的S原子与Au表面强烈作用形成Au-S键,构筑了纳米金-4,4'-二巯基二苯硫醚自组装膜修饰金电极(NG/DMDPSE/Au),然后研究了该电极的电化学行为.这不仅对纳米材料构建在基质表面提供了一个有效途径,而且对纳米粒子制成具有特殊功能的生物传感器具有一定的参考价值.  相似文献   

10.
结合近期研究工作, 简要介绍了在溶液环境下, 利用有机分子在金属表面构筑纳米结构, 利用光化学反应方法调控所得的纳米结构, 利用电化学扫描隧道显微镜对这些结构进行观察, 及利用毛细管隧道结方法测量纳米结构电学性质的相关结果. 并展望了表面纳米结构的构筑、控制和性质研究领域的发展趋势.  相似文献   

11.
Supramolecular metal ion assemblies are deposited from their solutions onto highly orientated pyrolytic graphite (HOPG) substrates to be imaged by scanning tunnelling microscopy (STM). Since the structural and electronic information of STM measurements are strongly entangled, the spectroscopic interpretation and analysis of the images of such molecular assemblies has proven to be challenging. This tutorial review focuses on a general room temperature scanning tunnelling spectroscopy (STS) protocol, current induced tunnelling spectroscopy (CITS), applied to free-standing 1D and 2D arrangements of supramolecular metal ion assemblies rendering local tunnelling probabilities with submolecular resolution. The size of the investigated molecular assemblies was confirmed by comparison with X-ray crystallographic data, while the consistency of the spectroscopic investigations and of the determined positions of the metal ions within the assemblies was checked by DFT calculations. Due to the genuine level structure of coordinated metal centers, it was possible to map exclusively the position of the coordination bonds in supramolecular transition metal assemblies with submolecular spatial resolution using the CITS technique. CITS might thus constitute an important tool to achieve directed bottom-up construction and controlled manipulation of fully electronically functional, two-dimensional molecular designs.  相似文献   

12.
To represent the corrosion characteristics of thin hard material layers, CrN layers, which were magnetron sputtered, have been exposed to solutions with chloride or sulfate ions. The alterations of the layer surfaces were examined. Static immersion tests were carried out ex-situ in 1 mol L(-1) NaCl or 1 mol L(-1) Na(2)SO(4) solution over a period of 14 months. For in-situ measurements, the layers were inserted into the electrochemical cell of an EC STM as the working electrode. The sample potential was altered cyclically. At the same time, voltammograms were taken and the topography alteration was observed.Alterations in the surface structure were documented as hybrid information resulting from changes in topography and the chemical consistency or the thickness of the oxide layers. These modifications were demonstrated with scanning tunnelling spectroscopy before and after the treatment with solutions. Several chemical phases (initial state and oxide layers) were distinguished with raster tunnelling spectroscopy (measurements I(V) and I(z)). The evaluation of the I(z) spectroscopy showed that the tip was in mechanical contact with the sample if an oxide layer of greater thickness has existed.Exemplary XPS investigations demonstrated corrosive alterations of the CrN layers due to oxidation. Asymmetry and peak locations suggest that in addition to Cr(2)O(3) and CrN a complex mixture of different chromium oxides such as Cr(2)O(3) and Cr(OH)( x) exists.  相似文献   

13.
扫描电子显微镜与扫描隧道显微镜联用装置   总被引:2,自引:0,他引:2  
在KYKY-1000B型扫描电子显微镜上所开发的与其联用的袖珍型扫描隧道显微镜主要有四个部分:(1)减震阻尼装置,(2)隧道探针,(3)探针扫描与逼近装置,(4)电子控制与图象采集系统。它的分辨率约为1nm,并用它观察了半导体光栅与硅上金膜的细微结构。  相似文献   

14.
The focus of the investigations presented is to evaluate local alterations caused by chloride ions affecting thin, magnetron-sputtered CrN layers. Scanning-probe microscopy and analysis techniques are used for this estimation. Thin CrN layers were deposited by reactive magnetron sputtering. They were investigated in electrochemical scanning tunnelling microscopy (EC STM) by cyclic voltammetry in 1 mol L(-1) NaCl. Simultaneously, the surface topography changes were recorded with STM.Above 100 mV the anodic oxidation leads to formation of chromium(III) hydroxide and at sample potentials above 350 mV oxidation of Cr(OH)(2) and Cr(OH)(3) towards chromium(VI) as a soluble chromate starts. Transpassive dissolution of the coating takes place above 900 mV. Yellow colour of the electrolyte is a visible sign for the formation of chromium(VI). Changes of the surface topography indicate the formation of surface layers at anodic potentials. At cathodic potentials increase in current is measured due to the reduction of chromium(III) hydroxide to divalent chromium and metallic chromium. Roughness of surface topography increases.Follow-up explorations with scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic-force microscopy (AFM), scanning tunnelling microscopy/scanning tunnelling spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS) not only evidence the formation of various chromium oxides, but also indicate the existence of chromium hydroxide.  相似文献   

15.
Nuclear quantum mechanical tunnelling is important in enzyme-catalysed H-transfer reactions. This viewpoint has arisen after a number of experimental studies have described enzymatic reactions with kinetic isotope effects that are significantly larger than the semiclassical limit. Other experimental evidence for tunnelling, and the potential role of promoting vibrations that transiently compress the reaction barrier, is more indirect, being derived from the interpretation of e.g. mutational analyses of enzyme systems and temperature perturbation studies of reaction rates/kinetic isotope effects. Computational simulations have, in some cases, determined exalted kinetic isotope effects and tunnelling contributions, and identified putative promoting vibrations. In this review, we present the available evidence – both experimental and computational – for environmentally-coupled Htunnelling in several enzyme systems, namely aromatic amine dehydrogenase and members of the Old Yellow Enzyme family. We then consider the relative importance of tunnelling contributions to these reactions. We find that the tunnelling contribution to these reactions confers a rate enhancement of ~1000-fold. Without tunnelling, a 1000-fold reduction in activity would seriously impair cellular metabolism. We therefore infer that tunnelling is crucial to host organism viability thereby emphasising the general importance of tunnelling in biology.  相似文献   

16.
Hydrogen atom isomerisations within five radical systems (i.e., CH(3)˙NH/˙CH(2)NH; CH(3)O˙/˙CH(2)OH; ˙CH(2)SH/CH(3)S˙; CH(3)CO(2)˙/˙CH(2)CO(2)H; and HOCH(2)CH(2)O˙/HO˙CHCH(2)OH) have been studied via quantum-mechanical hydrogen tunnelling through reaction barriers. The reaction rates including hydrogen tunnelling effects have been calculated for these gas phase reactions at temperatures from 300 K to 0 K using Wenzel-Kramers-Brillouin (WKB) and Eckart methods. The Eckart method has been found to be unsatisfactory for the last two systems listed above, because it significantly underestimates the width of the reaction barriers for the interconversions. The calculations at all-electron CCSD(T)/CBS level of theory indicate that the barriers for all reactions (forward and reverse) are greater than 100 kJ mol(-1), meaning that the chemical reactivity of the reactants is limited in the absence of hydrogen tunnelling. Hydrogen tunnelling, in some cases, enhance rates of reaction by more than 100 orders of magnitude at low temperature, and around 2 orders of magnitude at room temperature, compared to results obtained from canonical variational transition state theory. Tunnelling corrected reaction rates suggest that some of these isomerisation reactions may occur in interstellar media.  相似文献   

17.
The experimental kinetic data on the trapped electron decay in 6 M NaOH aqueous glass doped with electron scavengers were analysed. The electron decay curves obtained by the computer simulation under assumption of the simple tunnelling mechanism of the electron transfer were fitted to the experimental decays. It was found that for a group of scavengers the optimization procedure works well and gives the average barrier height for electron tunnelling between 1.26 and 1.42 eV. There is however a numerous group of scavengers for which the simple tunnelling mechanism does not provide adequate simulated kinetics of the trapped electron decay.  相似文献   

18.
The two-dimensional assemblies of truxenone, diindeno[1,2-a;1',2'-c]fluorene-5,10,15-trione, on the Au(111) surface have been studied by scanning tunnelling microscopy in ultrahigh vacuum. It is found that the truxenone monolayer on Au(111) exhibits different two-dimensional supramolecular structures. The investigation using scanning tunnelling microscopy combined with the density functional theory calculations can be a helpful approach to understand the complicated supramolecular structures of truxenone self-assembly on Au(111).  相似文献   

19.
Hydrogen transfer--an essential component of most biological reactions--is a quantum problem. A crucial question of great current interest is how enzymes modulate the quantum dynamics of hydrogen transfer to achieve their outstanding catalytic properties. That tunnelling occurs is now widely accepted, with the conceptual frameworks incorporating protein motion into the enzymic H-tunnelling process. Computational simulation can be used to help elucidate how enzymes work and facilitate H-tunnelling at the atomic level. We review the strength of a multidisciplinary approach--combining computational simulations with enzyme kinetics and structural biology--in revealing tunnelling mechanisms in enzymes. We focus on two paradigm systems--aromatic amine dehydrogenase, in which H-tunnelling is facilitated by fast (sub-picosecond) short range motions, and dihydrofolate reductase, in which a network of long-range coupled motions drives the tunnelling event.  相似文献   

20.
Structural mapping of intermediate size and large molecules and biomolecules at ultra-high resolution using single-crystal electrodes and in situ scanning tunnelling microscopy continues to disclose surprising findings. In situ scanning tunnelling spectroscopy has also recently disclosed new electrochemical conductivity features at the level of the single molecule. We overview briefly elements of this development over the last few years, with focus on three recent discoveries: (1) a new packing mode of a core monolayer target thiol, the amino acid cysteine (Cys) on Au(100)-electrodes, quite different from Cys packing on Au(111)- and Au(110)-electrodes; (2) transition of a core ferrocene in situ scanning tunnelling spectroscopy probe from stochastic single-molecule to macroscopic behaviour, a concept at the heart of nanoscience; and (3) unexpected behaviour of the large molybdenum enzyme sulfite oxidase, when going from macroscopic to single-molecule electrochemistry. We compare these studies with other recent discoveries of single-molecule protein conductivity and molecular scale inorganic nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号