首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shear-induced orientation of a rigid surfactant mesophase   总被引:1,自引:0,他引:1  
An optically clear, crystalline, gel-like mesophase is formed by the addition of water to a micellar solution consisting of a mixture of 0.85 M anionic surfactant sodium bis(2-ethylhexyl) sulfosuccinate (AOT) and a 0.42 M zwitterionic surfactant phosphatidylcholine (lecithin) in isooctane. At 25 degrees C and water to AOT molar ratio of 70, the system has a columnar hexagonal microstructure with randomly oriented domains. The shear-induced orientation and subsequent relaxation of this structure were investigated by rheological characterization and small-angle neutron scattering (SANS). The rheological response implies that the domains align under shear, and remain aligned for several hours after cessation of shear. Shear-SANS confirms this picture. The sheared gel mesophase retains its alignment as the temperature is increased to 57 degrees C, indicating the potential to conduct templated polymer and polymer-ceramic composite materials synthesis in aligned systems.  相似文献   

2.
Amphiphilic guanidinium alkylbenzenesulfonates (GCnBS; n = number of carbons in the alkyl chain) exhibited lyotropic behavior in aqueous and organic solvents. The GCnBS compounds formed gel-like phases in certain cyclic organic solvents (e.g. p-xylene, cyclohexane) through the formation of swollen interdigitated lamellar phases reinforced by hydrogen bonding between the guanidinium ions and sulfonate moieties. This behavior was not observed for the homologous sodium alkylbenzenesulfonates, indicating that hydrogen bonding, mediated by the guanidinium (G) ion, was required for gel formation. Infrared spectroscopy unambiguously demonstrated the existence of the quasi-hexagonal hydrogen-bonded sheet typically adopted by G ions and the sulfonate groups in layered, solvent-free crystalline phases of the compounds, supporting lamellar structures in the gels. Small-angle X-ray scattering analysis of these gels revealed GCnBS lamellar phases with interlayer spacings (d) that increased with increasing temperature, consistent with increased absorption of solvent by the nonpolar regions of the gelator. At the lower gelator concentrations, the increase in d-spacing achieved at the higher temperatures exceeded the sum of the alkylbenzene chain lengths, suggesting either long-range interactions between the GS sheets or undulation stabilized lamellae, which have been reported in aqueous lamellar gels. The GCnBS compounds also formed lyotropic phases in water, but the phase behavior was more complex than that of the organogels. The rheology suggested gel-like behavior associated with entangled worm-like micelles at these higher concentrations. These lyotropic phases were reminiscent of crystalline layered and tubular architectures exhibited by various guanidinium organomonosulfonate compounds. These lyotropic phases expand the liquid crystal behavior observed for GS compounds beyond recently observed thermotropic smectic phases, adding to the portfolio of phase behavior exhibited by these materials.  相似文献   

3.
Phase diagrams for ternary system of the Gemini cationic surfactants, N,N-long chain alkyl-2-hydroxyl-N,N,N,N-tetramethyl diammonium dichloride (GnCl2) with butanol and water have been drawn based on experimental data at 25 °C. The phase diagrams show that L phase and different liquid crystalline phases are existent in the ternary system at different components. Electric conductivity of the L phase has been studied. Small-angle X-ray scattering (SAXS), 2H (deuterium) quadrupolar splitting (2H NMR) and the polarizing-light microscope were employed to confirm the characteristic texture structures and the microstructure of three different liquid crystalline phases.  相似文献   

4.
The mixed surfactant system of bis (2-ethylhexyl) sodium sulfosuccinate (AOT) and α-phosphatidylcholine (lecithin) forms a rigid gel-like mesophase in the presence of equal volumes of water and a hydrocarbon (isooctane). Small angle neutron scattering (SANS) results indicate that these structures undergo transitions from columnar hexagonal geometries to lamellar geometries depending on the water content and/or the temperature. The system is used to synthesize nanostructured ceramics (silica) in the aqueous microphase. Interpenetrating networks of poly-(hydroxyethylmethacrylate) and poly(styrene) are also synthesized using the aqueous microphase to support the water soluble monomer (hydroxyethyl methacrylate) and the organic microphase (styrene). SANS results indicate that the template structure is maintained during materials synthesis.  相似文献   

5.
The phase behavior of ternary mixtures of 1-cetyl-3-methylimidazolium bromide (C(16)mim-Br)/p-xylene/water is studied by small-angle X-ray scattering (SAXS), polarized optical microscopy (POM), and rheology measurements. Two types of lyotropic liquid crystalline phases are formed in the mixtures: hexagonal and lamellar. The structural parameters of the lyotropic liquid crystalline phases are calculated. Greater surfactant content in the sample leads to denser aggregation of the cylindrical units in the hexagonal liquid crystalline phase. The increase in lattice parameter and thickness of the water layer in lamellar phase are attributed to the increase of water content, and the area per surfactant molecule at the hydrophobic/hydrophilic interface for lamellar phase is found to be larger than that for hexagonal phase. The structural parameters of the liquid crystalline phases formed from the cetyltrimethylammonium bromide (CTAB) system are larger than those for the C(16)mim-Br system. The rheological properties of the samples are also found to be related to the structure of the liquid crystalline phases.  相似文献   

6.
Development of new liquid crystalline materials exhibiting interesting properties and phases continues to be an enabling enterprise in the forward march of their successful display and non-display applications. The design and synthesis of a homologous series of liquid crystalline bent-core compounds derived from the oxadiazole bisaniline moiety and the phase behavior of three members of the series that exhibit nematic, smectic C, and dark conglomerate phases is reported. The liquid crystalline phases exhibited by these mesogens are characterized using polarized optical microscopy, differential scanning calorimetry and x-ray scattering techniques. All three homologs prepared exhibit the nematic phase. Interestingly, the homolog with short hexyl terminal chains exhibits only the nematic phase that is stable over a very broad, nearly 100 K wide, temperature range. The compound with terminal octyl chains shows the chiral dark conglomerate phase below the nematic phase despite the bent molecules being achiral. The homolog with dodecyl alkyl chains is found to possess the smectic-C and two additional lamellar phases besides the nematic phase. These compounds enrich the library of achiral bent-core materials capable of exhibiting chiral and nematic phases.  相似文献   

7.
Microemulsions have been widely used as microreactors for the synthesis of nanoparticles and mesoporous materials. The correlation between the microstructure of a microemulsion and the features of the obtained materials is the most intriguing problem. On this point, many investigations have their ground on the structure of the precursor microemulsion, i.e., the system before the reaction takes place. Nevertheless, any reactions usually involve the formation of byproducts (aside from the nanoparticles). Several of these byproducts (e.g., ions, amphiphilic molecules) could modify the microemulsion structure during the course of the reaction. Here we examine the hydrolysis of tetraethoxysilane (TEOS) in the water-in-oil microemulsion hexadecyl-trimethylammonium bromide (CTAB)/pentanol/hexane/water. Conductivity and NMR measurements performed during the course of the reaction, in combination with dynamic light scattering and pulsed field gradient spin-echo NMR investigation performed on the microemulsion upon the addition of ethanol, indicate that a byproduct (ethanol) modifies the microreactor structure. The ethanol produced by the TEOS hydrolysis drives the microemulsion structure from small disconnected reverse micelles toward large connected aggregates until (for high enough ethanol loading) the system phase separates into two coexisting liquid phases (a dense interconnected network and a dilute reverse micellar phase).  相似文献   

8.
Ternary cubic phases containing ionic liquid   总被引:1,自引:0,他引:1  
The phase diagram of 1-butyl-3-methylimidazolium tetrafluoroborate (bmim-BF(4)) in aqueous solutions of oleyl polyoxyethylene (20) ether (C(18:1)E(20)) was determined at 25 degrees C by a combination of visual inspection and small-angle X-ray scattering (SAXS). The micellar cubic Im3m liquid crystalline phase found in the ternary system was investigated by means of SAXS and rheological techniques. The cubic samples show highly elastic gel-like properties indicated by their mechanical and discrete relaxation spectra. Moreover at a constant C(18:1)E(20)/bmim-BF(4) ratio, with decreasing water content the network strength increases. The internal structure apparently becomes more stable, as indicated by an increase in the storage and loss moduli and a decrease in the lattice parameter alpha and interfacial area of per surfactant a(S). Furthermore, investigations on the representative micellar Im3m cubic phases formed in a relatively hydrophobic ionic liquid bmim-PF(6) with C(18:1)E(20) and water ternary system (P(1)), a C(18:1)E(20)/water binary system (J(1)), and C(18:1)E(20)/water/bmim-BF(4) system (B(1)) were made in comparison. It can be clearly seen that appreciably different mechanical spectra and relaxation spectra are shown by the cubic phases investigated. B(1) exhibits a typical gel-like dynamic rheogram while P(1) exhibits fluid-like viscoelastic properties to some extent, and J(1) shows traits of the general Maxwell model. These differences are analyzed through SAXS data as the employment of ionic liquids and their different location in the cubic phases.  相似文献   

9.
The structure of the reverse micellar cubic (I2) liquid crystal and the adjacent micellar phase in amphiphilic block copolymer/water/oil systems has been studied by small-angle X-ray scattering (SAXS), rheometry, and differential scanning calorimetry (DSC). Upon addition of water to the copolymer/oil mixture, spherical micelles are formed and grow in size until a disorder-order transition takes place, which is related to a sudden increase in the viscosity and shear modulus. The transition is driven by the packing of the spherical micelles into a Fd3m cubic lattice. The single-phase I2 liquid crystals show gel-like behavior and elastic moduli higher than 104 Pa, as determined by oscillatory measurements. Further addition of water induces phase separation, and it is found that reverse water-in-oil emulsions with high internal phase ratio and stabilized by I2 liquid crystals can be prepared in the two-phase region. Contrary to liquid-liquid emulsions, both the elastic modulus and the viscosity decrease with the fraction of dispersed water, due to a decrease in the crystalline fraction in the sample, although the reverse emulsions remain gel-like even at high volume fractions of the dispersed phase. A temperature induced order-disorder transition can be detected by calorimetry and rheometry. Upon heating the I2 liquid crystals, two thermal events associated with small enthalpy values were detected: one endothermic, related to the "melting" of the liquid crystal, and the other exothermic, attributed to phase separation. The melting of the liquid crystal is associated with a sudden drop in viscosity and shear moduli. Results are relevant for understanding the formation of cubic-phase-based reverse emulsions and for their application as templates for the synthesis of structured materials.  相似文献   

10.
The phase behavior of amphiphiles, e.g., lipids and surfactants, at low water content is of great interest for many technical and pharmaceutical applications. When put in contact with air having a moderate relative humidity, amphiphiles often exhibit coexistence between solid and liquid crystalline phases, making their complete characterization difficult. This study describes a (13)C solid-state NMR technique for the investigation of amphiphile phase behavior in the water-poor regime. While the (13)C chemical shift is an indicator of molecular conformation, the (13)C signal intensities obtained with the CP and INEPT polarization transfer schemes yield information on molecular dynamics. A theoretical analysis incorporating the effect of molecular segment reorientation, with the correlation time τ(c) and order parameter S, shows that INEPT is most efficient for mobile segments with τ(c) < 0.01 μs and S < 0.05, while CP yields maximal signal for rigid segments with τ(c) > 10 μs and/or S > 0.5 under typical solid-state NMR experimental conditions. For liquid crystalline phases, where τ(c) < 0.01 μs and 0 < S < 0.3, the observed CP and INEPT intensities serve as a gauge of S. The combination of information on molecular conformation and dynamics permits facile phase diagram determination for systems with solid crystalline, solid amorphous, anisotropic liquid crystalline, and isotropic liquid (crystalline) phases as demonstrated by experiments on a series of reference systems with known phase structure. Three solid phases (anhydrous crystal, dihydrate, gel), two anisotropic liquid crystalline phases (normal hexagonal, lamellar), and two isotropic liquid crystalline phases (micellar cubic, bicontinuous cubic) are identified in the temperature-composition phase diagram of the cetyltrimethylammonium succinate/water system. Replacing the succinate counterion with DNA prevents the formation of phases other than hexagonal and leads to a general increase of τ(c).  相似文献   

11.
Swollen and collapsed lyotropic lamellar rheology   总被引:1,自引:0,他引:1  
We have investigated linear rheological properties and the structure-flow relationship of the swollen (Lam(1)) and collapsed (Lam(2)) lamellar phases, formed on didodecyldimethylammonium bromide (DDAB)/lecithin/water ternary system at 25 degrees C. Both lamellar phases behaved like Bingham fluids and showed remarkable yield stresses. At rest the Lam(1) phase, which is characterized by densely packed vesicles whose sizes increase as the water content decreases in accordance to evolution of (2)H NMR spectral profiles of D(2)O, resulted in a strong elastic gel-like response. On the other hand, the Lam(2) phase, formed at high surfactant concentrations, showed a weak-gel viscoelasticity and (2)H NMR spectral patterns which are typical of planar bilayered structures. The increase of the quadrupole splitting as the water content decreases was assumed as a strong evidence of size increasing of the lamellar domains. We have demonstrated that by using dynamic rheology and the derived relaxation time spectra, along with (2)H NMR spectra of D(2)O, it is possible to differentiate between equilibrium lamellar structures occurring in a broad interval of total surfactant concentration. In addition, a shear-thickening regime, observed at intermediate shear-rate values, highlighted the onset of out-equilibrium lamellar structures which were present both on Lam(1) and Lam(2) phases.  相似文献   

12.
The ternary phase diagram of the amphiphilic triblock copolymer PEO-PPO-PEO ((EO)(20)(PO)(70)(EO)(20) commercialized under the generic name P123), water, and ethanol has been investigated at constant temperature (T = 23 degrees C) by small-angle X-ray scattering (SAXS). The microstructure resulting from the self-assembly of the PEO-PPO-PEO block copolymer varies from micelles in solution to various types of liquid crystalline phases such as cubic, 3D hexagonal close packed spheres (HCPS), 2D hexagonal, and lamellar when the concentration of the polymer is increased. In the isotropic liquid phase, the micellar structural parameters are obtained as a function of the water-ethanol ratio and block copolymer concentration by fitting the scattering data to a model involving core-shell form factor and a hard sphere structure factor of interaction. The micellar core, the aggregation number, and the hard sphere interaction radius decrease when increasing the ethanol/water ratio in the mixed solvent. We show that the fraction of ethanol present in the core is responsible for the swelling of the PPO blocks. In the different liquid crystalline phases, structural parameters such as lattice spacing, interfacial area of PEO block, and aggregation number are also evaluated. In addition to classical phases such as lamellar, 2D hexagonal, and liquid isotropic phases, we have observed a two-phase region in which cubic Fm3m and P6(3)mmc (hexagonally close packing of spheres (HCPS)) phases coexist. This appears at 30% (w/w) of P123 in pure water and with 5% (w/w) of ethanol. At 10% (w/w) ethanol, only the HCPS phase remains present.  相似文献   

13.
The phase behavior (temperature vs composition) and microstructure for the two binary systems Pluronic 25R4 [(PO)19(EO)33(PO)19]-water and Pluronic 25R2 [(PO)21(EO)14(PO)21]-water have been studied by a combined experimental approach in the whole concentration range and from 5 to 80 degrees C. The general phase behavior has been identified by inspection under polarized light. Precise phase boundaries have been determined by analyzing 2H NMR line shape. The identification and microstructural characterization of the liquid crystalline phases have been achieved using small-angle X-ray scattering (SAXS). The isotropic liquid solution phases have been investigated by self-diffusion measurements (PGSE-NMR method). 25R2 does not form liquid crystals and is miscible with water in the whole concentration range; with increasing temperature, the mixtures split into water-rich and a copolymer-rich solutions in equilibrium. 25R4 shows rich phase behavior, passing, with increasing copolymer concentration, from a water-rich solution to a lamellar and copolymer-rich solution. A small hexagonal phase, completely encircled in the stability region of the water-rich solution, is also present. In water-rich solutions, at low temperatures and low copolymer concentrations, the copolymers are dissolved as independent macromolecules. With increasing copolymer concentrations an interconnected network of micelles is formed in which micellar cores of hydrophobic poly(propylene oxide) are interconnected by poly(ethylene oxide) strands. In copolymer-rich solutions water is molecularly dissolved in the copolymer. The factors influencing the self-aggregation of Pluronic R copolymers (PPO-PEO-PPO sequence) are discussed, and their behavior in water is compared to that of Pluronic copolymers (PEO-PPO-PEO sequence).  相似文献   

14.
Biocompatible lipidic formulations: phase behavior and microstructure   总被引:1,自引:0,他引:1  
Biocompatible systems formulated for use in the food, cosmetic, and pharmaceutical fields are characterized. Ternary phase diagrams of mixtures of natural lipids (glycerol trioleate, glycerol monooleate, diglycerol monooleate, and lecithin) and water were investigated by means of optical microscopy in polarized light and by multinuclear NMR spectroscopy. All systems showed a microemulsion region at high oil content and a large area of coexistence of two liquid crystalline (hexagonal and lamellar) phases. 1H and 13C NMR self-diffusion measurements were used to characterize microstructural features of the microemulsions. On water dilution, the two-phase liquid crystalline region transforms into a creamy emulsion area where the droplets of water are stabilized by both the lamellar and the hexagonal phases, as indicated by 2H NMR measurements. Due to the very effective dispersing action of the two liquid crystalline phases, these emulsions show a high stability toward phase separation.  相似文献   

15.
Crystallization of poly(ethylene terephthalate) from the amorphous state has been studied in the temperature range 90°–120°C to characterize the amorphous phase when crystalline microstructure is developing. Small-angle x-ray scattering, scanning electron microscopy, and density measurements were used to investigate the morphology of semi-crystalline materials. Differential scanning calorimetry and dynamical mechanical spectroscopy experiments were carried out on amorphous, partially crystallized and crystallized specimens and, when structural relaxation is allowed (thermal treatments close to but below glass transition temperature), strong evidence is obtained for the existence of two different amorphous phases with different mobilities.  相似文献   

16.
The self-assembly behavior of a cationic surfactant (dodecyltrimethylammonium, DTA) with DNA as counterion in mixtures of water and n-alcohols (decanol, octanol, hexanol, butanol, and ethanol) was investigated. The phase diagrams were established and the different regions of the phase diagram characterized with respect to microstructure by (2)H NMR, small-angle X-ray scattering (SAXS), and other techniques. The DNA-DTA surfactant is soluble in all of the studied alcohols, showing increased solubility from decanol down to ethanol. All of the phase diagrams are analogous with respect to the occurrence of liquid crystalline (LC) regions, but the area of the LC region increases as one goes from decanol to ethanol. In all phase diagrams, hexagonal phases (of the reversed type) for the alcohol-rich side and lamellar phases for the other side were detected. For balanced proportions of the components, there is a coexistence of the lamellar and the hexagonal phase, here detected with a double quadrupole splitting in the (2)H NMR spectra. The correctness of the phase diagrams is confirmed by the fact that along the tie-lines the splitting magnitude remains nearly constant. All of the alcohols except for ethanol act as cosurfactants penetrating the DNA-DTA film. Adding salt to the ternary mixtures causes an increase in the unit cell dimension of the lamellar and the hexagonal phases. The phase diagram becomes more complicated when butanol is used for the alcohol phase. Here, there is the occurrence of a new isotropic phase with some properties analogous to those of the disordered sponge (L3) phase obtained for simple surfactant systems.  相似文献   

17.
The aqueous phase behavior of mixtures of 1-glycerol monooleate (GMO) and its ether analogue, 1-glyceryl monooleyl ether (GME) has been investigated by a combination of polarized microscopy, X-ray diffraction, and NMR techniques. Three phase diagrams of the ternary GMO/GME/water system have been constructed at 25, 40, and 55 degrees C. The results demonstrate that the increasing amount of GME favors the formation of the reversed phases, evidenced by the transformation of the lamellar and bicontinuous cubic liquid crystalline phases of the binary GMO/water system into reversed micellar or reversed hexagonal phases. For a particular liquid crystalline phase, increasing the GME content has no effect on the structural characteristics and hydration properties, thus suggesting ideal mixing with GMO. Investigations of dispersed nanoparticle samples using shear and a polymeric stabilizer, Pluronic F127, show the possibility of forming two different kinds of bicontinuous cubic phase nanoparticles by simply changing the GMO/GME ratio. Also NMR self-diffusion measurements confirm that the block copolymer, Pluronic F127, used to facilitate dispersion formation, is associated with nanoparticles and provides steric stabilization.  相似文献   

18.
沈阳  阮玉忠  于岩 《结构化学》2009,28(3):365-369
High-purity aluminum titanate was synthesized via a water quenching method with waste-residue in the aluminum factory and industrial TiO2 as the main raw materials, which belongs to the comprehensive utilization of solid wastes. Compared with the conventional method, it can reduce synthesis temperature, effectively inhibit decomposition and raise the content of AT; the addition of tiny silicon powder can improve the sintering and optimize the properties of AT. The crystalline phase structure and microstructure of each sample were characterized with XRD and SEM methods; the content of each crystalline phase in each sample was confirmed with Rietveld Quantification method; the properties of each sample were also tested. The experimental results showed that No. 4 is the optimum specimen, with the corresponding mass ratio of Al2O3/TiO2 to be 1.27 and the content of AT of 97.2 wt%. The addition of optimum tiny silicon powder is confirmed to be 8wt%; its corresponding bulk density is 2.63 g/cm^3, bending strength is 46.34 MPa, and the retention of one thermal vibration bending strength is 71.5%.  相似文献   

19.
Physical structures of aqueous cellulose nanocrystal (CNC) suspensions in anionic polyelectrolyte carboxymethyl cellulose (CMC) and non-ionic poly(ethylene oxide) (PEO) were investigated by studying their cross polarized, polarized optical microscope (POM) images and dynamic light scattering, zeta potential, 1H spin–lattice relaxation nuclear magnetic resonance (NMR) data. The presence of anionic CMC and nonionic PEO in CNC suspensions led to two different kind of interactions. Semi-dilute CNC suspensions showed first gel-like behavior then phase separation by adding only semi-dilute un-entangled CMC polymer solutions, whereas the addition of PEO didn’t cause any significant change. POM images showed the phase transitions of CNC suspensions in the presence of CMC solutions from the isotropic state to nematic and chiral nematic phases. Dynamic light scattering, zeta potential and 1H spin–lattice relaxation NMR data presented further arguments to explain polymer-CNC interactions in CMC and PEO solutions. 1H NMR solvent relaxation technique determined the adsorption and depletion interactions between polymers and CNC. The minima in spin–spin specific relaxation rate constant showed the depletion of CNC nanoparticles in CMC. It is believed that the depletion flocculation was the case for the effects of CMC polymer chains in CNC suspensions. PEO was adsorbed on CNC surfaces and caused only weak depletion interactions due to the presence of soft particles.  相似文献   

20.
Amphiphile lyotropic liquid crystalline self-assembly materials are being used for a diverse range of applications. Historically, the most studied lyotropic liquid crystalline phase is probably the one-dimensional (1-D) lamellar phase, which has been employed as a model system for biomembranes and for drug delivery applications. In recent years, the structurally more complex 2-D and 3-D ordered lyotropic liquid crystalline phases, of which reversed hexagonal (H(2)) and reversed cubic phases (v(2)) are two prominent examples, have received growing interest. As is the case for the lamellar phase, these phases are frequently stable in excess water, which facilitates the preparation of nanoparticle dispersions and makes them suitable candidates for the encapsulation and controlled release of drugs. Integral membrane protein crystallization media and templates for the synthesis of inorganic nanostructured materials are other applications for 2-D and 3-D amphiphile self-assembly materials. The number of amphiphiles identified as forming nanostructured reversed phases stable in excess solvent is rapidly growing. In this article, different classes of amphiphiles that form reversed phases in excess solvent are reviewed, with an emphasis on linking phase behavior to amphiphile structure. The different amphiphile classes include: ethylene oxide-, monoacylglycerol-, glycolipid-, phosphatidylethanolamine-, and urea-based amphiphiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号