首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 62 毫秒
1.
 由于新研制的3 GPa熔融盐固体介质高温高压三轴实验系统改进了高压容器的装样方式以及样品的尺寸,需要对新装置的压力容器进行温度标定,为此采用多个NiCr-NiSi热电偶,在围压为0.5 GPa时对样品内部和周围的温度分布进行了研究。实验结果表明,样品外侧相对于样品中心上1/3位置热电偶监测到的温度与其它位置监测到的温度之间具有良好的线性关系,它们之间的斜率大小可以直接反映出温度的高低。样品外侧相对于样品中心上1/3位置与下1/3位置监测温度基本相同,也可以作为实验控制温度;样品中心温度比样品外侧相对于样品中心上1/3位置和下1/3位置监测温度低4%;样品底部温度比样品中心温度低5%;样品内部相对于样品中心下1/4位置温度比样品中心低2%。样品的温度从中间向两端对称式递减,在样品尺寸范围内,样品的垂直温度梯度恒定(900 ℃为16 ℃/mm)。本设备样品温度分布和温度控制精度与国际同类型实验设备相类似,达到了国际同类设备的水平。  相似文献   

2.
3 GPa熔融盐固体介质三轴高温压力容器的轴压摩擦力标定   总被引:1,自引:0,他引:1  
 在温度标定和围压标定的基础上,采用轴压循环方法,对3 GPa固体介质三轴高温高压实验系统的轴压摩擦力进行了标定,分析了围压、温度、轴向位移速率、装样方式(盐套类型)等实验条件对轴压摩擦力的影响。结果表明:静摩擦力、挤压摩擦力和滑动摩擦力3种轴压摩擦力对轴向应力的影响不同,其中静摩擦力和挤压摩擦力对轴向应力的影响很小,影响应力精度的主要是滑动摩擦力。静摩擦力及滑动摩擦力与围压正相关;静摩擦力与轴向位移速率正相关,但受其影响较小,滑动摩擦力不受其影响;静摩擦力和滑动摩擦力与温度负相关,并且受其影响较显著;盐套类型对轴压摩擦力的影响较大,当实验条件接近盐套熔点时,轴压摩擦力显著降低,当样品周围的盐套处于熔融状态时,轴压摩擦力最小。基于此,确定了标定轴压摩擦力的具体步骤,并对角闪岩的应力-应变曲线进行了轴压摩擦力标定。对比轴压摩擦力校正前、后的应力-应变曲线发现,经过轴压摩擦力校正的应力-应变曲线能更好地反映样品的实际变形情况。  相似文献   

3.
 介绍了一种6-8型二级加压装置——1 000 t Walker型大腔体高温高压装置中样品的组装方式、组装件材料和压力标定方法。采用碳化钨作为压砧时,获得的最高压力超过20 GPa。压力标定方法采用相变点法,即利用Bi、Tl、ZnTe、Pb、SnS、GaAs等标准压力标定物质,通过测量其在室温高压下的电阻变化,确定相变点,进而获得高压腔体内的压力与外加载荷的关系。对具有不同二级压砧截角边长(4、6、8、12 mm)组装的内部实际压力进行标定,得到了外加载荷与内部压力的关系曲线,为今后在该装置上的实验样品组装及样品实际压力确定提供了准确的数据。  相似文献   

4.
 首次报道了一种新型的基于铰链式六面顶压机的二级6-8模大腔体静高压装置的内置加热元件的设计与温度标定。此加热组装结构简单,升温快,保温效果好,并有效地解决了国外基于两面顶压机构架下的二级6-8模内加热组装中热电偶在施加压力时易断的问题。以低成本的碳管为加热元件,采用直接和间接两种加热方式,用双铂铑(Pt6%Rh-Pt30%Rt)B型热电偶进行温度测量,并根据实验过程中加热功率与腔内实际温度的关系,对不同压力下腔体内的温度进行了标定。实验结果表明:此加热系统的油压达到40 MPa(腔体压力约10 GPa)时,温度可以达到1 700 ℃以上;在油压为30 MPa、样品室温度为1 000 ℃时,保温时间可达2 h,甚至更长;实验中获得样品的直径可达3 mm,高度可达7 mm,实现了在高温超高压条件下大样品的制备,满足了实验对产生高温超高压条件的需要。  相似文献   

5.
 由于X射线对高级相变和电子相变不够敏感,致使很多物质的相变和新的性质被忽略。对物质电阻的变化进行分析可以很好地弥补这一缺陷。通过金刚石对顶砧上原位电阻测量方法,在0~88.7 GPa的压强范围内,在300~443 K的温度条件下,基于范德堡法电阻测量原理,对硫化铁的电导率进行了测量。通过对电导率的分析发现,在零压、温度为408 K的条件下,硫化铁转变成了NiAs结构相。在34.7 GPa和61.3 GPa压强处发现了两个新的突变点,为了印证这两处相变的可靠性,分别测量了在不同压强下样品电导率随温度的变化情况。  相似文献   

6.
在室温下,0-15GPa压力范围内,测量了Eu^3^+:Gd2O2S的发射光谱。通过对7F0-6多重态能级结构的拟合,研究了压力对能级和晶体场的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号