首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
显示OH浓度分布图像的平面激光诱导荧光技术   总被引:3,自引:0,他引:3  
用平面激光诱导荧光 (PLIF)技术测量平面火焰炉、狭缝火焰炉的单脉冲激光诱导OH荧光。由平面荧光图可得到氢氧基相对浓度分布和它的宽度。对于扩散火焰 ,高温区在OH带内侧 ;而对于预混火焰 ,二者基本一致。湍流火焰的PLIF图则清晰地显示出火焰面的不规则性。氢氧基的PLIF图像是研究火焰结构和流场的有力工具。  相似文献   

2.
A method for simultaneous measurements of fluorescence lifetimes of two species along a line is described. The experimental setup is based on picosecond laser pulses from two tunable optical parametric generator/optical parametric amplifier systems together with a streak camera. With an appropriate optical time delay between the two laser pulses, whose wavelengths are tuned to excite two different species, laser-induced fluorescence can be both detected temporally and spatially resolved by the streak camera. Hence, our method enables one-dimensional imaging of fluorescence lifetimes of two species in the same streak camera recording. The concept is demonstrated for fluorescence lifetime measurements of CO and OH in a laminar methane/air flame on a Bunsen-type burner. Measurements were taken in flames with four different equivalence ratios, namely ? = 0.9, 1.0, 1.15, and 1.25. The measured one-dimensional lifetime profiles generally agree well with lifetimes calculated from quenching cross sections found in the literature and quencher concentrations predicted by the GRI 3.0 mechanism. For OH, there is a systematic deviation of approximately 30 % between calculated and measured lifetimes. It is found that this is mainly due to the adiabatic assumption regarding the flame and uncertainty in H2O quenching cross section. This emphasizes the strength of measuring the quenching rates rather than relying on models. The measurement concept might be useful for single-shot measurements of fluorescence lifetimes of several species pairs of vital importance in combustion processes, hence allowing fluorescence signals to be corrected for quenching and ultimately yield quantitative concentration profiles.  相似文献   

3.
4.
Absolute concentrations of all important chemiluminescent species, OH–A, CH–A, CH–B, and C2-d have been measured for the first time in methane-oxygen flames at low pressure. The optical detection system for chemiluminescence measurements has been calibrated with Rayleigh and Raman scattering of a cw laser, with the latter approach yielding superior results. The measured ratio between the concentration of CH–B and CH–A suggests that the electronically excited CH* is formed close to thermal equilibrium. Introduction of different rate constants for reactions leading to CH–A and CH–B were not necessary to explain the experimental results. Results are compared with a recent numerical model. Deviations in profile shape and peak positions are relatively small for stoichiometric flames, but become more pronounced in richer mixtures. Larger discrepancies are observed for the absolute concentrations, depending on the chemiluminescent species and the stoichiometry. In an attempt to find an alternative method for the quantification of chemiluminescent species, MIR-CRDS has been performed around 3.9 μm. While H2O and OH–X could be measured, the sensitivity was not high enough to detect the low sub-ppb concentration of OH–A—in part due to the limited reflectivity of mirrors in the MIR, in part due to a significant background of hot H2O lines.  相似文献   

5.
3 photodissociation is shown to be an important photolytic source of H atoms in the reaction zone of the methane flames. At 226 nm, an efficient energy transfer between O(3P) and N2 is established from the observation of O-resonant emissions from the second positive system of N2. The subsequent rate of O(3P) depletion appears to be essentially “controlled” by the O(3P) concentration and is probably only minimally temperature dependent. Finally quenching rate coefficients for O(3P) by water and nitrogen are deduced from quenching rates measurements performed in CH4/O2/N2 and CH4/O2/Ar flames. Received: 7 November 1996/Revised version: 28 January 1997  相似文献   

6.
A means of performing simultaneous, high-speed measurements of temperature and OH lifetime-corrected laser-induced fluorescence (LIF) for tracking unsteady flames has been developed and demonstrated. The system uses the frequency-doubled and frequency-tripled output beams of an 80 MHz mode-locked Ti:sapphire laser to achieve ultrashort laser pulses (order 2 ps) for Rayleigh-scattering thermometry at 460 nm and lifetime-corrected OH LIF at 306.5 nm, respectively. Simultaneous, high-speed measurements of temperature and OH number density enable studies of flame chemistry, heat release, and flame extinction in unsteady, strained flames where the local fluorescence-quenching environment is unknown.  相似文献   

7.
8.
9.
Single laser detection of CO and OH via laser-induced fluorescence   总被引:1,自引:0,他引:1  
Two-photon laser-induced fluorescence detection of carbon monoxide with excitation in the Fourth Positive System near 280 nm is demonstrated in carbon monoxide/nitrogen mixtures at ambient conditions and in a methane/air Bunsen flame. Fully resolved rotational spectra are presented for the A–X (5,0) and (4,0) bands near 279 and 284 nm, respectively. Energy transfer from excited molecular nitrogen to carbon monoxide with subsequent fluorescence from carbon monoxide that was reported for low pressure conditions in the literature has also been observed at atmospheric conditions. It was further demonstrated that overlaps of some CO A–X (4,0) rotational lines with OH A–X (1,0) rotational lines allow simultaneous excitation of both species with a single laser. The fluorescence bands are completely separated, enabling detection without crosstalk. Detection limits are adequate to detect CO in nascent state in a flame and it is expected that for application in high-pressure, low-temperature combustion environments, where high quantities of CO are present, this approach can provide advantages compared to the excitation of CO at shorter wavelengths due to decreased laser beam attenuation.  相似文献   

10.
11.
12.
In recent years, there has been renewed interest in chemiluminescence, since it has been shown that these emissions can be used to determine flame parameters such as stoichiometry and heat release under some conditions. Even though the origin of these emissions has been known for a long time, little attention has been paid to the detailed analysis of the spectral structure. In this contribution, we present rotationally-resolved spectra of all important chemiluminescent emissions OH A-X, CH B-X, CH A-X, and C2 d-a in CH4/air flames. A numerical model based on the LASKINν 2 code has been developed that allows, for the first time, to accurately predict the shape of the measured spectra for all of these transitions. Reabsorption of chemiluminescence within the emitting flame is shown to be a major factor, affecting both intensity and structure of OH? spectra. Even in lab-scale flames, it might change the intensity of individual lines by a factor of 5. The shape of chemiluminescence spectra depends on several processes including initial state distribution and rotational and vibrational energy transfer (which, in turn, depend on the collisional environment and the temperature). It is shown that chemical reactions form OH? in highly excited states and that the number of collisions is not sufficient to equilibrate the initial distribution. Therefore, high apparent temperatures are necessary to describe the shape of the measured spectra. In contrast, CH? is formed with less excess energy and the spectral shape is very close to thermal. The rotational structure of $\mathrm{C}_{2}^{*}$ is close to thermal equilibrium as well. Vibrational temperatures are, however, significantly higher than the flame temperature. Implications and perspectives for flame measurements are discussed.  相似文献   

13.
傅恩生 Azca.  ML 《光学学报》1991,11(5):02-408
本文描述了CDCI_3介质中的激光感生荧光中的共振光声效应(简称荧光声共振效应)。指出这种荧光声共振效应与通常的光声效应的区别。给出了利用荧光声共振效应确定介质中的声速、第二维里系数、声吸收系数、分子内模弛豫时间、粘滞系数和热导率的理论公式,以CDCI_3为例,给出了上述各参数的具体数值。  相似文献   

14.
15.
A computational method is described in order to correct OH LIF temperature measurements for absorption of laser energy and trapping of fluorescence. Calculations are performed in a large range of flame conditions and can be used as a correction data base both in case of (0-0) and (1?0) excitations. Comparison of corrected temperatures profiles obtained in a 40 Torr methanol/air flame, for both kinds of Laser-Induced Fluorescence (LIF) excitations shows a very good agreement. This method is applied to measure the temperature profile of a methanol flame perturbed by a sampling probe. The LIF collection volume is located at the actual probe sampled volume using an experimental procedure already described. Spatial resolution and sensitivity of temperature measurements are sufficiently efficient to highlight, for the first time by LIF, an indubitable cooling effect due to the probe presence that induces important OH profile change. According to flame chemical modelling, it is shown that both effects are strongly correlated.  相似文献   

16.
Chemiluminescence has been observed since the beginning of spectroscopy, nevertheless, important facts still remain unknown. Especially, reaction pathways leading to chemiluminescent species such as OH?, CH?, $\mathrm{C}_{2}^{*}$ , and $\mathrm{CO}_{2}^{*}$ are still under debate and cannot be modeled with standard codes for flame simulation. In several cases, even the source species of spectral features observed in flames are unknown. In recent years, there has been renewed interest in chemiluminescence, since it has been shown that this radiation can be used to determine flame parameters such as stoichiometry and heat release under some conditions. In this work, we present a reaction mechanism which predicts the OH?, CH? (in A- and B-state), and $\mathrm{C}_{2}^{*}$ emission strength in lean to fuel-rich stoichiometries. Measurements have been performed in a set of low-pressure flames which have already been well characterized by other methods. The flame front is resolved in these measurements, which allows a comparison of shape and position of the observed chemiluminescence with the respective simulated concentrations. To study the effects of varying fuels, methane flame diluted in hydrogen are measured as well. The 14 investigated premixed methane–oxygen–argon and methane–hydrogen–oxygen–argon flames span a wide parameter field of fuel stoichiometry (?=0.5 to 1.6) and hydrogen content (H2 vol%=0 to 50). The relative comparison of measured and simulated excited species concentrations shows good agreement. The detailed and reliable modeling for several chemiluminescent species permits correlating heat release with all of these emissions under a large set of flame conditions. It appears from the present study that the normally used product of formaldehyde and OH concentration may be less well suited for such a prediction in the flames under investigation.  相似文献   

17.
Laser-induced incandescence has been rapidly developed into a powerful diagnostic technique for measurements of soot in many applications. The incandescence intensity generated by laser-heated soot particles at the measurement location suffers the signal trapping effect caused by absorption and scattering by soot particles present between the measurement location and the detector. The signal trapping effect was numerically investigated in soot measurements using both a 2D LII setup and the corresponding point LII setup at detection wavelengths of 400 and 780 nm in a laminar coflow ethylene/air flame. The radiative properties of aggregated soot particles were calculated using the Rayleigh–Debye–Gans polydisperse fractal aggregate theory. The radiative transfer equation in emitting, absorbing, and scattering media was solved using the discrete-ordinates method. The radiation intensity along an arbitrary direction was obtained using the infinitely small weight technique. The contribution of scattering to signal trapping was found to be negligible in atmospheric laminar diffusion flames. When uncorrected LII intensities are used to determine soot particle temperature and the soot volume fraction, the errors are smaller in 2D LII setup where soot particles are excited by a laser sheet. The simple Beer–Lambert exponential attenuation relationship holds in LII applications to axisymmetric flames as long as the effective extinction coefficient is adequately defined.  相似文献   

18.
A pulsed beam of ground state OH radicals is slowed down using a Stark decelerator and is subsequently loaded into an electrostatic trap. Characterization of the molecular beam production, deceleration, and trap loading process is performed via laser induced fluorescence detection inside the quadrupole trap. Depending on the details of the trap loading sequence, typically 10(5) OH (X2Pi(3/2),J=3/2) radicals are trapped at a density of around 10(7) cm(-3) and at temperatures in the 50-500 mK range. The 1/e trap lifetime is around 1.0 s.  相似文献   

19.
The influence of oxidizer dilution in oxy-liquid ethanol flames is experimentally investigated by using a coaxial air-assisted injector positioned in a vertical combustion chamber. This study accounts for the influence of a two-phase mode since two different injector geometries are used: for the first configuration, a vaporization mode is observed at nominal power in oxy conditions, while for the second one, a brush mode is observed. Dilution with air is applied by keeping oxidizer velocity constant. Flame structure is observed through CH emission: dilution leads to an increase in the flame diameter, and collective effects of two-phase combustion are encouraged. The effect of dilution on oxy flame stability is also studied: for a given oxygen mass fraction in the oxidizer, the oxidizer flow rate is increased until extinction occurs. Dilution leads to a less stable flame, which may be essentially explained by the decrease in laminar flame speed with dilution. For high oxidizer dilution levels, the change in flame structure might be another parameter to consider. Finally, species concentrations are measured using a standard gas sampling technique. NO and CO evolutions with dilution are different between both two-phase combustion regimes. An empirical approach based on thermal NO mechanism and CO oxidation reaction enables one to explain the evolutions for brush mode. For vaporization mode, the residence time in burned gases is also to be considered.  相似文献   

20.
Laser-induced fluorescence from carbon atoms, excited at the two-photon resonances around 280 nm, has been detected in fuel-rich hydrocarbon flames together with Swan band emission from the C2 radical, which was non-resonantly excited at the same wavelengths. The emission from the C atom and from the C2 molecule exhibited several similarities, indicating a possible common photo-chemical origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号