首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An on-line electrochemistry/electrospray mass spectrometry system (EC/MS) is described that allows fast analysis of the oxidation products of peptides. A range of peptides was oxidized in an electrochemical cell by application of a potential ramp from 0 to 1.5 V during passage of the sample. Electrochemical oxidation of peptides was found to occur readily when tyrosine was present. Tyrosine was found to be oxidized between 0.5 and 1.0 V to various oxidation products, including peptide fragments formed by hydrolysis at the C-terminal side of tyrosine. The results confirm earlier knowledge on the mechanisms and reaction products of chemical and electrochemical peptide oxidation. Methionine residues are also readily oxidized, but do not induce peptide cleavage. At potentials higher than about 1.1 V, additional oxidation products were observed in some peptides, including loss of 28 Da from the C-terminus and dimerization. The tyrosine-specific cleavage reaction suggests a possible use of the EC/MS system as an on-line protein digestion and peptide mapping system. In addition, the system can be used to distinguish phosphorylated from unphosphorylated tyrosine residues. Four forms of the ZAP-70 peptide ALGADDSYYTAR with both, either or neither tyrosine phosphorylated were subjected to a 0-1.5 V potential ramp. Oxidation of, and cleavage adjacent to, tyrosine was observed exclusively at unphosphorylated tyrosine residues.  相似文献   

2.
3.
质谱选择反应监测(SRM)技术在蛋白质绝对定量分析中的应用越来越广泛,其成功应用的关键是肽段母子离子对的正确选择与确证.触发采集二级图谱是目前常用的母子离子对确认方法,但分析效率有待于提高.质谱智能选择反应监测(iSRM)是新近发展的高通量分析方法.为了考察该方法用于通量化母子离子对确证时的效果,选用牛血清白蛋白(BSA)和酵母蛋白提取物作为样品进行分析.结果表明,该方法具有更高的分析灵敏度,可以对低至1 fmol BSA样品中的母子离子对进行确证,而且相对于触发采集二级图谱方法而言,具有更高的分析通量,为规模化母子离子对选择与确证提供了一种新的策略.  相似文献   

4.
In vivo nitration of tyrosine residues is a post-translational modification mediated by peroxynitrite that may be involved in a number of diseases. The aim of this study was to evaluate possibilities for site-specific detection of tyrosine nitration by mass spectrometry. Angiotensin II and bovine serum albumin (BSA) nitrated with tetranitromethane (TNM) were used as model compounds. Three strategies were investigated: (i) analysis of single peptides and protein digests by matrix-assisted laser desorption/ionization (MALDI) peptide mass mapping, (ii) peptide mass mapping by electrospray ionization (ESI) mass spectrometry and (iii) screening for nitration by selective detection of the immonium ion of nitrotyrosine by precursor ion scanning with subsequent sequencing of the modified peptides. The MALDI time-of-flight mass spectrum of nitrated angiotensin II showed an unexpected prompt fragmentation involving the nitro group, in contrast to ESI-MS, where no fragmentation of nitrated angiotensin II was observed. The ESI mass spectra showed that mono- and dinitrated angiotensin II were obtained after treatment with TNM. ESI-MS/MS revealed that the mononitrated angiotensin II was nitrated on the side-chain of tyrosine. The dinitrated angiotensin II contained two nitro groups on the tyrosine residue. Nitration of BSA was confirmed by Western blotting with an antibody against nitrotyrosine and the sites for nitration were investigated by peptide mass mapping after in-gel digestion. Direct mass mapping by ESI revealed that two peptides were nitrated. Precursor ion scanning for the immonium ion for nitrotyrosine revealed two additional partially nitrated peptides. Based on the studies with the two model compounds, we suggest that the investigation of in vivo nitration of tyrosine and identification of nitrated peptides might be performed by precursor ion scanning for the specific immonium ion at m/z 181.06 combined with ESI-MS/MS for identification of the specific nitration sites.  相似文献   

5.
Protein tyrosine nitration is one of the important regulatory mechanisms in various cellular phenomena such as cell adhesion, endo/exo-cytosis of cellular materials, and signal transduction. In the present study, electrospray ionization tandem mass spectrometry (ESI-MS/MS) with a linear ion-trap mass spectrometer was applied for identification of nitrated proteins and localization of the modified tyrosine residues. When angiotensin II(DRVYIHPF) was nitrated in vitro with tetranitromethane (TNM), the mass spectrum showed a shift of +45 Da which corresponded to tyrosine nitration. An additional +29 Da mass shift was also detected by ESI-MS. This differed from nitrated peptide analysis with matrix-associated laser desorption/ionization mass spectrometry (MALDI-MS), which showed oxygen neutral loss from the nitrated tyrosine residues upon laser irradiation. Hence the +29 Da mass shift of the nitrated peptide observed by ESI-MS suggested the introduction of an NO group for nitrosylation of tyrosine residues. To confirm this in vitro nitrosylation on the protein level, bovine serum albumin was in vitro nitrated with TNM and analyzed by ESI-MS/MS. As expected, +29 as well as +45 Da mass shifts were detected, and the +29 Da mass shift was found to correspond to the modification on tyrosine residues by NO. Although the chemical mechanism by which this occurs in ESI-MS is not clear, the +29 Da mass shift could be a new potential marker of nitrosylated peptides.  相似文献   

6.
The analysis of peptides presents serious challenges for bioanalytical scientists including low total ion current and non‐selective fragmentation during tandem mass spectrometry (MS/MS). During method validation of a peptide in rat serum matrix some interferences could not be easily removed and thus prevented accurate and precise measurement. These problems associated with peptide quantitation were resolved by using FAIMS (high‐Field Asymmetric waveform Ion Mobility Spectrometry). This selectivity‐enhancing technique filters out matrix interferences, and the resulting pseudo‐selected reaction monitoring (pseudo‐SRM) chromatograms were nearly free from interferences. Control blank matrix samples contained an acceptable level of interference (only 7% signal as compared to the lower level of quantitation). Chromatographic peaks were easily, accurately and precisely integrated resulting in a validated liquid chromatography (LC)/FAIMS‐MS/MS method for the analysis of a peptide drug in rat serum according to United States Food and Drug Administration (US FDA) bioanalytical guidelines. These results confirm that new selectivity‐enhancing technologies aid the pharmaceutical industry in reliably producing acceptable pharmacokinetic data. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Oxidative modifications to amino acid side chains can change the dissociation pathways of peptide ions, although these variations are most commonly observed when cysteine and methionine residues are oxidized. In this work we describe the very noticeable effect that oxidation of histidine residues can have on the dissociation patterns of peptide ions containing this residue. A common product ion spectral feature of doubly charged tryptic peptides is enhanced cleavage at the C-terminal side of histidine residues. This preferential cleavage arises as a result of the unique acid/base character of the imidazole side chain that initiates cleavage of a proximal peptide bond for ions in which the number of protons does not exceed the number of basic residues. We demonstrate here that this enhanced cleavage is eliminated when histidine is oxidized to 2-oxo-histidine because the proton affinity and nucleophilicity of the imidazole side chain are lowered. Furthermore, we find that oxidation of histidine to 2-oxo-histidine can cause the misassignment of oxidized residues when more than one oxidized isomer is simultaneously subjected to tandem mass spectrometry (MS/MS). These spectral misinterpretations can usually be avoided by using multiple stages of MS/MS (MS(n)) or by specially optimized liquid chromatographic separation conditions. When these approaches are not accessible or do not work, N-terminal derivatization with sulfobenzoic acid avoids the problem of mistakenly assigning oxidized residues.  相似文献   

8.
Iodination of tyrosine was recently discovered as a useful method for generating radical peptides via photodissociation of carbon-iodine bonds by an ultraviolet photon in the gas phase. The subsequent fragmentation behavior of the resulting odd-electron peptides is largely controlled by the radical. Although previous experiments have focused on mono-iodination of tyrosine, peptides and proteins can also be multiply iodinated. Tyrosine and, to a lesser extent, histidine can both be iodinated or doubly iodinated. The behavior of doubly iodinated residues is explored under conditions where the sites of iodination are carefully controlled. It is found that radical peptides generated by the loss of a single iodine from doubly iodinated tyrosine behave effectively identically to singly iodinated peptides. This suggests that the remaining iodine does not interfere with radical directed dissociation pathways. In contrast, the concerted loss of two iodines from doubly iodinated peptides yields substantially different results that suggest that radical recombination can occur. However, sequential activation can be used to generate multiple usable radicals in different steps of an MS n experiment. Furthermore, it is demonstrated that in actual peptides, the rate of iodination for tyrosine versus mono-iodotyrosine cannot be predicted easily a priori. In other words, previous assumptions that mono-iodination of tyrosine is the rate-limiting step to the formation of doubly iodinated tyrosine are incorrect.  相似文献   

9.
Site-specific characterisation of mucin-type O-linked glycosylation is an analytical challenge due to glycan heterogeneity, lack of glycosylation site consensus sequence and high density of occupied glycosylation sites. Here, we report the use of electron transfer dissociation (ETD) for the site-specific characterisation of densely glycosylated mucin-type O-linked glycopeptides using ESI-IT-MS/MS. Synthetic glycopeptides from the human mucin-1 (MUC-1) tandem repeat region containing a range of O-linked, tumour-associated carbohydrate antigens, namely Tn, T and sialyl T, with different glycosylation site occupancies and an increasing number of tandem repeats were studied. In addition, a glycopeptide from the anti-freeze glycoprotein of Antarctic and Arctic notothenoids, bearing four O-linked, per-acetylated T antigens was characterised. ETD MS/MS of infused or capillary LC-separated glycopeptides provided broad peptide sequence coverage (c/z·-type fragment ions) with intact glycans still attached to the Ser/Thr residues. Thus, the glycosylation sites were unambiguously determined, while simultaneously obtaining information about the attached glycan mass and peptide identity. Highly sialylated O-glycopeptides showed less efficient peptide fragmentation, but some sequence and glycosylation site information was still obtained. This study demonstrates the capabilities of ETD MS/MS for site-specific characterisation of mucin-type glycopeptides containing high-density O-linked glycan clusters, using accessible and relative low-resolution/low-mass accuracy IT MS instrumentation.  相似文献   

10.
The use of chemical crosslinking is an attractive tool that presents many advantages in the application of mass spectrometry to structural biology. The correct assignment of crosslinked peptides, however, is still a challenge because of the lack of detailed fragmentation studies on resultant species. In this work, the fragmentation patterns of intramolecular crosslinked peptides with disuccinimidyl suberate (DSS) has been devised by using a set of versatile, model peptides that resemble species found in crosslinking experiments with proteins. These peptides contain an acetylated N-terminus followed by a random sequence of residues containing two lysine residues separated by an arginine. After the crosslinking reaction, controlled trypsin digestion yields both intra- and intermolecular crosslinked peptides. In the present study we analyzed the fragmentation of matrix-assisted laser desorption/ionization-generated peptides crosslinked with DSS in which both lysines are found in the same peptide. Fragmentation starts in the linear moiety of the peptide, yielding regular b and y ions. Once it reaches the cyclic portion of the molecule, fragmentation was observed to occur either at the following peptide bond or at the peptide crosslinker amide bond. If the peptide crosslinker bond is cleaved, it fragments as a regular modified peptide, in which the DSS backbone remains attached to the first lysine. This fragmentation pattern resembles the fragmentation of modified peptides and may be identified by common automated search engines using DSS as a modification. If, on the other hand, fragmentation happens at the peptide bond itself, rearrangement of the last crosslinked lysine is observed and a product ion containing the crosslinker backbone and lysine (m/z 222) is formed. The detailed identification of fragment ions can help the development of softwares devoted to the MS/MS data analysis of crosslinked peptides.  相似文献   

11.
A convenient way to study lipid oxidation products-modified proteins by means of suitable model systems has been investigated. As a model peptide, the oxidized B chain of insulin has been chemically modified by either 4-hydroxy-2-nonenal (HNE) or hexanal and the extent, sites, and structure of modifications were assessed by electrospray mass spectrometry. A reduction step, using either NaCNBH(3) or NaBH(4), was also studied to stabilize the alkylated compounds. From the data gathered, it appeared that NaCNBH(3), when added at the beginning of incubation, dramatically influenced the HNE-induced modifications in terms of the addition mechanism (Schiff base formation instead of Michael addition) but also of the amino acid residues modified (N-terminal amino acid instead of histidine residues). However, by reducing the HNE-adducted species at the end of the reaction with NaBH(4), the fragment ions obtained in the product ion scan experiments become more stable and thus, easier to interpret in terms of origin and mechanism involved. With regard to hexanal induced modifications, we have observed that hexanal addition under reductive conditions led to an extensive modification of the peptide backbone. Moreover, as confirmed by "in-source" collision followed by collision induced dissociation (CID) experiments on selected precursor ions (pseudo-MS(3) experiments), N,N-di-alkylations were first observed on the N-terminal residue and further on Lys(29) residue. On the other hand, compared to the native peptide, no significant changes in MS/MS fragmentation patterns (b and y ions series) were observed whatever the basic site modified by the aldehyde-addition.  相似文献   

12.
The term reactive oxygen species refers to small molecules that can oxidize, for example, nearby proteins, especially cysteine, methionine, tryptophan, and tyrosine residues. Tryptophan oxidation is always irreversible in the cell and can yield several oxidation products, such as 5-hydroxy-tryptophan (5-HTP), oxindolylalanine (Oia), kynurenine (Kyn), and N-formyl-kynurenine (NFK). Because of the severe effects that oxidized tryptophan residues can have on proteins, there is a great need to develop generally applicable and highly sensitive techniques to identify the oxidized residue and the oxidation product. Here, the fragmentation behavior of synthetic peptides corresponding to sequences recently identified in three skeletal muscle proteins as containing oxidized tryptophan residues were studied using postsource decay and collision-induced dissociation (CID) in matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF)/TOF mass spectrometry (MS) and CID in an electrospray ionization (ESI) double quadrupole TOF-MS. For each sequence, a panel of five different peptides containing Trp, 5-HTP, Kyn, NFK, or Oia residue was studied. It was always possible to identify the modified positions by the y-series and also to distinguish the different oxidation products by characteristic fragment ions in the lower mass range by tandem MS. NFK- and Kyn-containing peptides displayed an intense signal at m/z 174.1, which could be useful in identifying accordingly modified peptides by a sensitive precursor ion scan. Most importantly, it was always possible to distinguish isomeric 5-HTP and Oia residues. In ESI- and MALDI-MS/MS, this was achieved by the signal intensity ratios of two signals obtained at m/z 130.1 and 146.1. In addition, high collision energy CID in the MALDI-TOF/TOF-MS also permitted the identification of these two isomeric residues by their v- and w-ions, respectively.  相似文献   

13.
A series of amphiphilic graft copolymers P(HFMA)‐g‐P(SPEG) comprising poly(hexafluorobutyl methacrylate) (PHFMA) backbones and poly(ethylene glycol) (PEG) side chains were synthesized by copolymerization of HFMA and SPEG macromonomer with the p‐vinylbenzyl end group. The SPEG macromonomer was synthesized by reacting Methoxy poly(ethylene glycol) (MPEG) with p‐chloromethylstyrene in THF in the presence of NaH. The macromonomer and amphiphilic graft copolymer were characterized by FTIR, 1H NMR, 19F NMR, and gel permeation chromatography (GPC). The critical micelle concentration (CMC) of the amphiphilic graft copolymer was measured by surface tension technique. The results showed that the CMC decreased with increasing HFMA contents in the graft copolymers. The interaction between P(HFMA)‐g‐P(SPEG) and bovine serum albumin (BSA) was studied by fluorescence spectroscopy, transmission electron microscopy (TEM), and photon correlation spectroscopy (PCS). The fluorescence spectrum showed that the fluorescence intensity of BSA increased with increasing content of HFMA in P(HFMA)‐g‐P(SPEG) and concentration of P(HFMA)‐g‐P(SPEG) in the P(HFMA)‐g‐P(SPEG)/BSA solution. TEM micrographs showed that P(HFMA)‐g‐P(SPEG) mainly formed core‐shell structure micelles. When BSA was added, the micelles changed from a core‐shell structure into a worm‐like, vesicle‐like and hollow‐like structure with different initial concentrations of the copolymer. The size distribution of the micelles increased proving that the copolymer micelles encapsulated the bovine serum albumin. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4895–4907, 2009  相似文献   

14.
A novel fluorinated amphiphilic copolymer P(HFMA)-g-P(SPEG) was synthesized. The interactions between P(HFMA)-g-P(SPEG) and bovine serum albumin (BSA) were studied by synchronous fluorescence and intrinsic fluorescence spectroscopy. It was concluded through synchronous fluorescence that P(HFMA)-g-P(SPEG) mainly bound to tryptophan residues of BSA. Intrinsic fluorescence results revealed that BSA and P(HFMA)-g-P(SPEG) had strong interactions. The mechanism of quenching belonged to dynamic quenching and the main sort of binding force was hydrophobic force. The hydrophobic interaction between P(HFMA)-g-P(SPEG) and BSA was conformed by micropolarity and TEM photographs.  相似文献   

15.
Multiple reaction monitoring (MRM) is commonly used for the quantitative analysis of proteins during mass pectrometry (MS), and has excellent specificity and sensitivity for an analyte in a complex sample. In this study, a pseudo-MRM method for the quantitative analysis of low-abundance serological proteins was developed using hybrid quadrupole time-of-flight (hybrid Q-TOF) MS and peptide affinity-based enrichment. First, a pseudo-MRM-based analysis using hybrid Q-TOF MS was performed for synthetic peptides selected as targets and spiked into tryptic digests of human serum. By integrating multiple transition signals corresponding to fragment ions in the full scan MS/MS spectrum of a precursor ion of the target peptide, a pseudo-MRM MS analysis of the target peptide showed an increased signal-to-noise (S/N) ratio and sensitivity, as well as an improved reproducibility. The pseudo-MRM method was then used for the quantitative analysis of the tryptic peptides of two low-abundance serological proteins, tissue inhibitor of metalloproteinase 1 (TIMP1) and tissue-type protein tyrosine phosphatase kappa (PTPκ), which were prepared with peptide affinity-based enrichment from human serum. Finally, this method was used to detect femtomolar amounts of target peptides derived from TIMP1 and PTPκ, with good coefficients of variation (CV 2.7% and 9.8%, respectively), using a few microliters of human serum from colorectal cancer patients. The results suggest that pseudo-MRM using hybrid Q-TOF MS, combined with peptide affinity-based enrichment, could become a promising alternative for the quantitative analysis of low-abundance target proteins of interest in complex serum samples that avoids protein depletion.  相似文献   

16.
Broad-scale mass spectrometric analyses of glycopeptides are constrained by the considerable complexity inherent to glycoproteomics, and techniques are still being actively developed to address the associated analytical difficulties. Here we apply Orbitrap mass analysis and higher-energy C-trap dissociation (HCD) to facilitate detailed insights into the compositions and heterogeneity of complex mixtures of low abundance glycopeptides. By generating diagnostic oxonium product ions at mass measurement errors of <5 ppm, highly selective glycopeptide precursor ion detections are made at sub-fmol limits of detection: analyses of proteolytic digests of a hen egg glycoprotein mixture detect 88 previously uncharacterized glycopeptides from 666 precursor ions selected for MS/MS, with only one false positive due to co-fragmentation of a non-glycosylated peptide with a glycopeptide. We also demonstrate that by (1) identifying multiple series of glycoforms using high mass accuracy single stage MS spectra, and (2) performing product ion scans at optimized HCD collision energies, the identification of peptide + N-acetylhexosamine (HexNAc) ions (Y1 ions) can be readily achieved at <5 ppm mass measurement errors. These data allow base peptide sequences and glycan compositional information to be attained with high confidence, even for glycopeptides that produce weak precursor ion signals and/or low quality MS/MS spectra. The glycopeptides characterized from low fmol abundances using these methods allow two previously unreported glycosylation sites on the Gallus gallus protein ovoglycoprotein (amino acids 82 and 90) to be confirmed; considerable glycan heterogeneities at amino acid 90 of ovoglycoprotein, and amino acids 34 and 77 of Gallus gallus ovomucoid are also revealed.  相似文献   

17.
Rhopeptin A was isolated as the first cyclopentapeptide from the moss Rhodobyum giganteum [Schwaegr.] Par . This novel compound consists of proline, phenylalanine, and 3‐hydroxyproline ring‐bonded amino acid residues connected to a tyrosine fragment via an ether bridge. Attached to a 3‐hydroxyproline unit is a side chain of pyroglutamic acid residue. The structure of the peptide was deduced from the 1D‐ and 2D‐NMR and MS data.  相似文献   

18.
Insulin‐like growth factor‐I (IGF‐I) is a known biomarker of recombinant human growth hormone (rhGH) abuse, and is also used clinically to confirm acromegaly. The protein leucine‐rich α‐2‐glycoprotein (LRG) was recently identified as a putative biomarker of rhGH administration. The combination of an ACN depletion method and a 5‐min ultra‐high‐performance liquid chromatography/tandem mass spectrometry (uHPLC/MS/MS)‐based selected reaction monitoring (SRM) assay detected both IGF‐I and LRG at endogenous concentrations. Four eight‐point standard addition curves of IGF‐I (16–2000 ng/mL) demonstrated good linearity (r2 = 0.9991 and coefficients of variance (CVs) <13%). Serum samples from two rhGH administrations were extracted and their uHPLC/MS/MS‐derived IGF‐I concentrations correlated well against immunochemistry‐derived values. Combining IGF‐I and LRG data improved the separation of treated and placebo states compared with IGF‐I alone, further strengthening the hypothesis that LRG is a biomarker of rhGH administration. Artificial neural networks (ANNs) analysis of the LRG and IGF‐I data demonstrated an improved model over that developed using IGF‐I alone, with a predictive accuracy of 97%, specificity of 96% and sensitivity of 100%. Receiver operator characteristic (ROC) analysis gave an AUC value of 0.98. This study demonstrates the first large scale and high throughput uHPLC/MS/MS‐based quantitation of a medium abundance protein (IGF‐I) in human serum. Furthermore, the data we have presented for the quantitative analysis of IGF‐I suggest that, in this case, monitoring a single SRM transition to a trypsin peptide surrogate is a valid approach to protein quantitation by LC/MS/MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The combination of separation techniques and mass spectrometry (MS) for peptide investigation allows superior sensitivity of detection and richer fragmentation data than available by direct MS analysis of a complex mixture. In this regard, liquid chromatography (LC) coupled to electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) MS have evolved as versatile analytical tools in proteomics. Very often, however, the product ion mass spectrum is either incomplete or overfilled with ions, thus making sequence analysis difficult. Here we report overall ion intensity improvement of C-terminal lysine-containing peptides from Lys-C digest by on-column derivatization of lysines with 2-methoxy-4,5-dihydro-1H-imidazole. The method is simple, fast and exhibits 100% efficiency of the reaction. Additionally, post-source decay carried out on derivatized peptides gave rise almost exclusively to y-series ion formation, at 100% sequence coverage and high intensity. The novelty of the method resides in the side reaction of this derivatization process, namely the methylation of cysteines. This facilitates the estimation of the disulfide bridge position in a protein and the fragmentation of cysteine-containing peptide fragments. Additionally, by using this derivatization procedure, the loss of peptides, their degradation and/or oxidation, usually occurring in digest alkylation procedures, is greatly minimized. The new on-column derivatization protocol is designed to be carried out on C18 Spin Tubes or Cleanup C18 Pipette Tips. We observed that use of buffered D2O solvent prevented unwanted oxidation and degradation reactions with respect to the stationary phase. This may be due to the fact that a deuteron is less polar than a proton, and thus the bonded silica stationary phase saturated with deuterons does not affect the reaction between epsilon-amino or cysteine thiol groups and 2-methoxy-4,5-dihydro-1H-imidazole. Complete tagging of the peptides by on-column reaction could be obtained when using D2O, as compared to water-based reaction. Methylation of cysteine residues was enhanced when beta-mercaptoethanol was added in the reactant solution.  相似文献   

20.
Toxic organophosphorus compounds (e.g., pesticides and nerve agents) are known to react with nucleophilic side chains of different amino acids (phosphylation), thus forming adducts with endogenous proteins. Most often binding to serine, tyrosine, or threonine residues is described as being of relevance for toxicological effects (e.g., acetylcholinesterase and neuropathy target esterase) or as biomarkers for post-exposure analysis (verification, e.g., albumin and butyrylcholinesterase). Accordingly, identification of novel protein targets might be beneficial for a better understanding of the toxicology of these compounds, revealing new bioanalytical verification tools, and improving knowledge on chemical reactivity. In the present study, we investigated the reaction of ubiquitin (Ub) with the V-type nerve agents Chinese VX, Russian VX, and VX in vitro. Ub is a ubiquitous protein with a mass of 8564.8 Da present in the extra- and intracellular space that plays an important physiological role in several essential processes (e.g., proteasomal degradation, DNA repair, protein turnover, and endocytosis). Reaction products were analyzed by matrix-assisted laser desorption/ionization-time-of-flight- mass spectrometry (MALDI-TOF MS) and μ-high-performance liquid chromatography online coupled to UV-detection and electrospray ionization MS (μHPLC-UV/ESI MS). Our results originally document that a complex mixture of at least mono-, di, and triphosphonylated Ub adducts was produced. Surprisingly, peptide mass fingerprint analysis in combination with MALDI and ESI MS/MS revealed that phosphonylation occurred with high selectivity in at least 6 of 7 surface-exposed lysine residues that are essential for the biological function of Ub. These reaction products were found not to age. In addition, we herein report for the first time that phosphonylation induced intramolecular cyclization by formation of an isopeptide bond between the ε-amino group of a formerly phosphonylated lysine and the side chain of an adjacent acidic glutamic acid residue.
Lysine residues in ubiquitin are phosphonylated by nerve agents and undergo intramolecular cyclization  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号