首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Two new malonate-containing uranyl complexes with carbamide of the formulas [UO2(C3H2O4)(Urea)2] (I) and [UO2(C3H2O4)(Urea)3] (II), where Urea is carbamide, and one uranyl oxalate complex of the formula [UO2(C2O4)(Urea)3] (III) were synthesized, and their crystals were studied by X-ray diffraction. The main structural units in crystals I are the electroneutral chains [UO2(C3H2O4)(Urea)2] belonging to the crystal-chemical group AT11M21 (A = UO22+, T11 = C3H2O42-, M1 = Urea) of uranyl complexes. Crystals II and III are composed of the molecular complexes [UO2(L)(Urea)3], where L = C3H2O42- or C2O42-, belonging to the crystal-chemical group AB01M31 (A = UO22+, B01 = C3H2O42- or C2O42-, M1 = Urea). The characteristic features of the packing of the uranium-containing complexes are discussed in terms of molecular Voronoi–Dirichlet polyhedra. The effect of the Urea: U ratio on the structure of uranium-containing structural units is considered.  相似文献   

2.
The synthesis and X-ray diffraction study of compound Rb2[(UO2)2(C2O4)3], which crystallizes in the monoclinic crystal system, are performed. The unit cell parameters are as follows: a = 7.9996(6) Å, b = 8.8259(8) Å, c = 11.3220(7) Å, β = 105.394(2)°, and V = 770.7(1) Å3; space group P21/n, Z = 2, and R 1 = 0.0271. [(UO2)2(C2O4)3]2? layers belonging to the AK 0.5 02 T 11 crystal chemical group of uranyl complexes (A = UO 2 2+ , K 02 = C2O 4 2? , and T 11 = C2O 4 2? ) are uranium-containing structural units of the crystals. The layers are connected with outer-sphere rubidium cations by electrostatic interactions.  相似文献   

3.
The structure of a new natural oxide found near the Tashelga River (Eastern Siberia) was studied by X-ray diffraction. The pseudo-orthorhombic unit cell parameters are a = 5.6973(1) Å, b = 17.1823(4) Å, c = 23.5718(5) Å, β = 90°, sp. gr. Pc. The structure was refined to R = 0.0516 based on 4773 reflections with |F| > 7σ(F) taking into account the twin plane perpendicular to the z axis (the twin components are 0.47 and 0.53). The crystal-chemical formula (Z = 4) is Ca2Mg 2 IV Fe 2 (2+)IV [Al 14 VI O31(OH)][Al 2 IV O][AlIV]ALIV(OH)], where the Roman numerals designate the coordination of the atoms. The structure of the mineral is based on wide ribbons of edge-sharing Al octahedra (an integral part of the spinel layer). The ribbons run along the shortest x axis and are inclined to the y and z axes. The adjacent ribbons are shifted with respect to each other along the y axis, resulting in the formation of step-like layers in which the two-ribbon thickness alternates with the three-ribbon thickness. Additional Al octahedra and Mg and Fe2+ tetrahedra are located between the ribbons. The layers are linked together to form a three-dimensional framework by Al tetrahedra, Ca polyhedra, and hydrogen bonds with the participation of OH groups.  相似文献   

4.
A specimen of a new representative of the palygorskite-sepiolite family from Aris phonolite (Namibia) is studied by single-crystal X-ray diffraction. The parameters of the triclinic (pseudomonoclinic) unit cell are as follows: a = 5.2527(2) Å, b = 17.901(1) Å, c = 13.727(1) Å, α = 90.018(3)°, β = 97.278(4)°, and γ = 89.952(3)°. The structure is solved by the direct methods in space group P \(\bar 1\) and refined to R = 5.5% for 4168 |F| > 7σ(F) with consideration for twinning by the plane perpendicular to y (the ratio of the twin components is 0.52: 0.48). The crystal chemical formula (Z = 1) is (Na1.6K0.2Ca0.2)[Ca2(Fe 3.6 2+ Al1.6Mn0.8)(OH)9(H2O)2][(Fe 3.9 2+ Ti0.1)(OH)5(H2O)2][Si16O38(OH)2] · 6H2O, where the compositions of two ribbons of octahedra and a layer of Si tetrahedra are enclosed in brackets. A number of specific chemical, symmetrical, and structural features distinguish this mineral from other minerals of this family, in particular, from tuperssuatsiaite and kalifersite, which are iron-containing representatives with close unit cell parameters.  相似文献   

5.
The compound Rb2[(UO2)2(CrO4)3(H2O)2] · 4H2O was studied by X-ray diffraction. The crystals are monoclinic, a = 10.695(2) Å, b = 14.684(3) Å, c = 14.125(3) Å, β = 108.396(4)°, sp. gr. P21/c, Z = 4, V = 2104.9(7) Å3, and R = 0.0491. The main structural units are layers consisting of [(UO2)2(CrO4)3(H2O)2]2? anions belonging to the crystal-chemical group A 2 T 2 3 B 2M 2 1 (A = UL 2 2+ , T 3 and B 2 are CrO 4 2? , and M 1 is H2O) of uranyl complexes. The uranium-containing layered groups are held together by electrostatic interactions with rubidium cations, as well as by hydrogen bonds with the participation of inner- and outer-sphere water molecules.  相似文献   

6.
Single crystals of the compound Na3(H3O)[UO2(SeO3)2]2 · H2O (I) have been synthesized, and their structure has been investigated using X-ray diffraction. Compound I crystallizes in the triclinic system with the unit cell parameters a = 9.543(6)Å, b = 9.602(7)Å, c = 11.742(8)Å, α = 66.693(16)°, β = 84.10(2)°, γ = 63.686(14)°, space group P \(\bar 1\), Z = 2, and R = 0.0734. The uranium-containing structural units of the crystals are [UO2(SeO3)2]2? chains, which belong to the crystal-chemical group AB 2 B 11 (A = UO 2 2+ , B 2 = SeO 3 2? , B 11 = SeO 3 2? ) of the uranyl complexes. The structures of the compounds containing the [UO2(SeO3)2]2? anionic complexes are compared.  相似文献   

7.
A new compound (Rb0.50Ba0.25)[UO2(CH3COO)3] is synthesized and its crystal structure is studied by X-ray diffraction. The compound crystallizes in the form of yellow plates belonging to the cubic crystal system. The unit cell parameter a = 17.0367(1) Å, V = 4944.89(5) Å3, space group I \(\bar 4\)3d, Z = 16, and R = 0.0182. The coordination polyhedron of the uranium atom is a hexagonal bipyramid with oxygen atoms of three acetate groups and the uranyl group in the vertices. The crystal chemical formula of the uranium-containing group is AB 3 01 (A = UO 2 2+ , B 01 = CH3COO?). The oxygen atoms of the acetate groups that enter the coordination polyhedron of uranium are bound to barium and rubidium atoms.  相似文献   

8.
Crystals of UO2CrO4(C5NH5COO)2(H2O)] · 2H2O are synthesized and their structure is studied by X-ray diffraction. The compound crystallizes in the triclinic crystal system. The unit cell parameters are as follows: a = 7.0834(10) Å, b = 10.6358(14) Å, c = 12.9539(17) Å, α = 75.096(2)°, β = 74.490(2)°, and γ = 80.657(2)°; V = 904.1(2) Å3, space group P \(\bar 1\), Z = 2, and R = 0.026. The structure is built of [UO2CrO4(C5NH5COO)2(H2O)]2 centrosymmetric dimers, which are linked into a framework by a system of hydrogen bonds involving inner-sphere and outer-sphere water molecules. The coordination number of the U(VI) atom is seven, and the coordination polyhedron is a pentagonal bipyramid with the oxygen atoms of the uranyl group, two chromate groups, two molecules of isonicotinic acid, and a water molecule at the vertices. The crystal chemical formula of the [UO2CrO4(C5NH5COO)2(H2O)]2 dimer is represented as AB 2 M 3 1 , where AB 2 M 3 1 , where A = UO 2 2+ , B 2 = CrO 4 2? , and M 1 = = C5NH4COOH and H2O.  相似文献   

9.
The synthesis and single-crystal X-ray diffraction study of Cs[UO2(SeO4)(OH)] · 1.5H2O (I) and Cs[UO2(SeO4)(OH)] · H2O (II) are performed. Compound I crystallizes in the monoclinic crystal system, a = 7.2142(2) Å, b = 14.4942(4) Å, c = 8.9270(3) Å, β = 112.706(1)°, space group P21/m, Z = 4, and R = 0.0222. Compound II is monoclinic, a = 8.4549(2) Å, b = 11.5358(3) Å, c = 9.5565(2) Å, β = 113.273(1)°, space group P21/c, Z = 4, and R = 0.0219. The main structural units of crystals I and II are [UO2(SeO4)(OH)]? layers which belong to the AT 3 M 2 crystal chemical group of uranyl complexes (A = UO 2 2+ , T 3 = SeO4 2?, and M 2 = OH?). In structure I, johannite-like layers are found. Structure II is a topological isomer of I. The two structures differ in the number of U(VI) atoms bound to the central atom by all bridging ligands.  相似文献   

10.
The crystal structure of a natural calcium-lithium-aluminum tourmaline, which has the unique composition (Ca0.62Na0.320.06)(Al1.08Li0.99Fe 0.66 2+ Mg0.24Ti0.03)Al6[Si6O18](BO3)3(OH2.28O0.72) · (F0.84O0.16), is refined (R = 0.019, R w = 0.022, S = 1.47). It is found that the O(1)(W) site is split into two sites, O(1) and O(11), which are incompletely occupied by fluorine and oxygen anions, respectively, and that the O(3)(V) site contains bivalent oxygen anions. The solid solution studied is close in composition to the liddicoatite mineral species and differs from the latter one by the Li: Al ratio in the Y octahedra and the presence of bivalent oxygen anions in the O(3) site. The tourmaline studied differs from the hypothetical oxyliddicoatite by the population of the O(1)(W) site by fluorine and accommodation of additional oxygen anions in the O(3)(V) site.  相似文献   

11.
Compound [UO2(C5H12N2O)5](ClO4)2 is synthesized and characterized by thermogravimetry, IR spectroscopy, and X-ray diffraction. The compound crystallizes in the monoclinic crystal system; a = 15.2985(9) Å, b = 26.9676(15) Å, c = 20.6962(11) Å, β = 100.697(1)°, space group P21/c, Z = 8, and R = 0.0445. Discrete [UO2(C5H12N2O)5]2+ groups belonging to the AM 5 1 crystal chemical group of uranyl complexes (A = UO 2 2+ and M 1=C5H12N2O) are uranium-containing structural units of the crystals.  相似文献   

12.
Thermal expansion of an EuF2.136 nonstoichiometric crystal with the fluorite structure type (Eu 0.864 2+ Eu 0.136 3+ F2.136, lattice parameter 5.82171(5) Å) has been experimentally investigated in the temperature range of 9–500 K. The coefficient of thermal expansion is α = 15.8 × 10–6 K–1 at T = 300 K. The observed anomalies in the behavior of the coefficient of thermal expansion at T > 400 K are related to the oxidation processes with partition of Eu2+ ions. It is established by differential scanning calorimetry that the onset temperature of EuF2 + x oxidation in air is 430 K and that this process occurs in three stages. X-ray diffraction analysis shows that the oxidation is accompanied by the formation of a phase mixture based on two modifications of the Eu 1– y 3+ Eu y 2+ F3–y solid solution with the structure types of tysonite (LaF3), orthorhombic β-YF3 phase, and europium oxyfluorides of variable composition EuO1–xF1 + 2x, with dominance of the latter.  相似文献   

13.
The crystal structure of the beryllium-rich cordierite [(Na0.28Ca0.19)(H2O)0.92](Mg1.86Fe 0.14 22? ) · { Al3.39Be0.61Si5O18} was established by X-ray diffraction analysis (IPDS Stoe diffractometer, λMoKα radiation, graphite monochromator, 2θmax = 65°, R = 0.0186 for 1378 reflections): a = 16.850(3), b = 9.729(2), and c = 9.298(2) Å; V = 1524.3(4) Å3, sp. gr. Cccm, Z = 4, and ρcalcd = 2.655 g/cm3. The numbers of Mg and Fe atoms isomorphously occupying the octahedral positions, Al and Be atoms in tetrahedra, and Na and Ca atoms and H2O molecules in the framework cavities are refined. The hydrogen atom is localized and its coordinates and thermal displacement parameters are refined. Based on the comparative crystallochemical analysis of cordierites from different locations and origins, the regularities relating the unit-cell parameters b and c and the distortion index to the features of the chemical composition of the minerals under study are shown.  相似文献   

14.
Succinic acid salts-tris(2-hydroxyethyl)ammonium succinate (C6H16NO3) 2 + C4H4O 4 2? (monoclinic crystals, sp. gr. P21/c, Z = 4) and tris(2-hydroxyethyl)ammonium hydrogen succinate (C6H16NO3)+C4H5O 4 ? (monoclinic crystals, sp. gr. P21/c, Z = 4)—were synthesized and structurally characterized. The specific features of the three-dimensional structures of tris(2-hydroxyethyl)ammonium salts of succinic acid are considered. The role of interionic electrostatic interactions in the structure stabilization and the formation of products of composition 1: 1 and 1: 2 derived from succinic acid is discussed.  相似文献   

15.
The pyroxferroite and pyroxmangite from xenoliths of aluminous gneisses in the alkaline basalts of Bellerberg paleovulcano (Eifel, Germany) have been studied by electron-probe and X-ray diffraction methods and IR spectroscopy. The parameters of the triclinic unit cells are found to be a = 6.662(1) Å, b = 7.525(1) Å, c = 15.895(2) Å, α = 91.548(3)°, β = 96.258(3)°, and γ = 94.498(3)° for pyroxferroite and a = 6.661(3) Å, b = 7.513(3) Å, c = 15.877(7) Å, α = 91.870(7)°, β = 96.369(7)°, and γ = 94.724(7)° for pyroxmangite; sp. gr. \(P\overline 1 \). The crystallochemical formulas (Z = 2) are, respectively, M(1–2)(Mn0.5Ca0.4Na0.1)2M(3–6)(Fe, Mn)4M7[Mg0.6(Fe, Mn)0.4][Si7O21] and M(1–3)(Mn, Fe)3M(4–6)[(Fe, Mn)0.7Mg0.3]3M7[Mg0.5(Fe, Mn)0.5][Si7O21]. For these and previously studied representatives of the pyroxmangite structural type, an analysis of the cation distribution over sites indicates wide isomorphism of Mn2+, Fe2+, and Mg in all cation M(1–7) sites and the preferred incorporation of Сa and Na into large seven-vertex M1O7 and M2O7 polyhedra and Mg into the smallest five-vertex M7O5 polyhedron.  相似文献   

16.
Electrical conductivity σ of ScF3 single crystals (sp. gr. \(Pm\overline 3 m\), ReO3 structure type) has been studied by impedance spectroscopy and compared with the electrical conductivity of rare earth HoF3 (β-YF3 type) and LaF3 (tysonite type) trifluorides. ScF3 crystals obtained by Bridgman directional solidification have ionic conductivity σ = 4 × 10–8 S/cm at 673 K. It is smaller than the σ values for LaF3 (sp. gr. \(P\overline 3 c1\)) and HoF3 (sp. gr. Pnma) single crystals by a factor of 104–105. The low conductivity of ScF3 crystals is due to the weak coordinating ability (coordination number CN = 6) and low electronic polarizability (αcat = 1.1 Å3) of Sc3+ ions. Mobile VF+ vacancies and less mobile interstitial Vi- ions (defects are formed according to the Frenkel mechanism) are involved in the ion transport. HoF3 and LaF3 single crystals have a high coordinating ability (CN = 9 for Ho3+ and CN = 11 for La3+) and a high electronic polarizability of cations (αcat = 1.6–1.9 Å3 for Ho3+ and αcat = 2.2 Å3 for La3+). Only mobile VF+ vacancies (defects are formed according to the Schottky mechanism) are involved in ion transport.  相似文献   

17.
The crystal structure of natural titanium-containing ludwigite has been refined. The unit-cell parameters are a = 9.260 ± 0.002 Å, b = 12.294± 0.002 Å, c = 3.0236± 0.0005 Å, sp. gr. Pbam, and R = 0.0288. The observed cation distribution over the M1-M4 positions corresponds to the structural formula (Mg0.5)(Mg1.0)(Mg0.338Fe 0.162 2+ )(Fe 0.47 3+ Ti 0.21 4+ Mg 0.15 2+ Al 0.10 3+ Fe 0.07 2+ (BO3)O2. Highly charged titanium ions in the M4 position are balanced mainly with magnesium and not with divalent iron ions.  相似文献   

18.
The crystal structure of (HPhen)2S2O8 · 2H2O is studied using X-ray diffraction. The crystals are monoclinic, a = 23.716(5) Å, b = 10.220(2) Å, c = 13.103(3) Å, β = 128.03(2)°, V = 2501.6(9) Å3, Z = 4, space group C2/c, and R = 0.0745 for 1579 reflections with I > 2σ(I). The crystal is built of S2O 8 2? centrosymmetric anions, HPhen + cations, and molecules of crystallization water. Hydrogen bonds link the structural units into chains. Within a chain, stacking interactions are observed between the phenanthroline rings (the interplanar spacing between the rings is 3.8 Å, and the dihedral angle between their planes is 8°). The data of IR spectroscopy confirm the formation of the N(Phen)-H bond.  相似文献   

19.
The crystal structure of the SrFe(Edta)Cl · 5H2O (I) complex is determined. The crystals are monoclinic, a = 7.530(4) Å, b = 10.575(3) Å, c = 23.308(10) Å, β = 95.75(4)°, Z = 4, and space group P21/c. The structural units of I are infinite ribbons of the molecular type that are formed by tetranuclear fragments. A tetranuclear fragment involves the centrosymmetric positively charged dimer group [Sr(H2O)4Cl] 2 2+ at the center and the [Fe(Edta)(H2O)]? anionic complexes, which compensate for the positive charge of the dimer group, at the periphery. These constituents are bound via bridging oxygen atoms of the Edta ligands. The coordination number of the Sr atom is nine. The Sr-O bond lengths lie in the range between 2.552 and 2.766 Å, the Sr-Cl bond length is 3.216(3) Å, and the Sr?Sr distance is 4.371(1) Å. The parameters of the [Fe(Edta)(H2O)]? group are within the range of values observed in such complexes: Fe-O, 1.996–2.086(3) Å; Fe-O(w), 2.110(4) Å; and Fe-N, 2.289(4) and 2.327(4) Å. Separate ribbons are linked by hydrogen bonds involving all H2O molecules and terminal oxygen atoms of the Edta ligand.  相似文献   

20.
The magnetic susceptibility χ(T) at 4.2 K < T < 293 K; the dependence of the magnetic moment on the magnetic field strength, M(H), at 4.2, 77, and 293 K; and the electrical resistivity ρ(T) at 4.2 K < T < 293 K are studied for samples of perovskite-phase KTaO3 obtained by both solid-phase synthesis (KTaO 3 s ) and deposition on a cathode during electrolysis of melts (KTaO 3 e ). Yellowish white KTaO 3 s powders are diamagnetic and reveal dielectric properties. Dark polycrystalline KTaO 3 e samples with metallic luster are characterized by the dependence ρ(T) typical of metals and additional paramagnetic contribution to the paramagnetic susceptibility as compared with KTaO 3 e . Changes in the properties of KTaO3 during electrocrystallization are attributed to partial reduction of tantalum. They are revealed in the structural features of KTaO 3 e (excess of tantalum as compared to the stoichiometric composition of KTaO 3 e , deficiency of the oxygen sublattice, and clearly pronounced anharmonicity of atomic vibrations). A change of the cation-anion-cation interactions, occurring owing to the overlapping of oxygen p orbitals with tantalum t2g orbitals and the formation of impurity levels near the conduction band, leads to the generation of free carriers, which make a paramagnetic contribution to the magnetic susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号