首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Schiff base (L) ligand is prepared via condensation of pyridine-2,6-dicarboxaldehyde with -2-aminopyridine. The ligand and its metal complexes are characterized based on elemental analysis, mass, IR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). The molar conductance reveals that all the metal chelates are non-electrolytes. IR spectra shows that L ligand behaves as neutral tridentate ligand and bind to the metal ions via the two azomethine N and pyridine N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III), Fe(III), Co(II), Ni(II), Cu(II), and Th(IV)) and tetrahedral (Mn(II), Cd(II), Zn(II), and UO2(II)). The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also was screened for its antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data shows that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.  相似文献   

2.
A new series of Fe (III), Co (II), Zn (II), Y (III), Zr (IV) and La (III) complexes derived from the novel ligand 4-(4-Isopropyl phenyl)-2-oxo-6-phenyl 1,2-dihyropyridine-3-carbonitrile (L) were synthesized and characterized. The mode of bonding of L and geometrical structures of their metal complexes were elucidated by different micro analytical and spectral methods (FT-IR,UV–visible,1H NMR and Mass spectra) as well as thermal analysis (TG and DTG), and differential scanning calorimetry (DSC). The results of analytical and spectroscopic equipments revealed that L acts as bidentate through nitrogen of carbonitrile group and oxygen of keto group. The conductivity measurement results deduced that these chelates are electrolyte with 1:2 for Co (II), Zn (II), and Zr (IV) and 1:3 for Fe (III), Y (III), and La (III). The results of magnetic moment measurements supported paramagnetic for some complexes (Fe (III), Co (II) and Cu (II)) and diamagnetic phenomena for the other complexes (Y (III), Zr (IV) and La (III)). Thermodynamic parameters such as energy of activation E*, entropy ΔS*, enthalpy ΔH* and Gibss free energy ΔG* were calculated using Coats-Redfern and Horowitz-Metzeger methods at n = 1 or n#1. Some results of bioactivity tests for ligands and their metal complexes were recorded against Gram-positive, Gram-negative bacteria and antifungal. The complexes showed significant more than free ligand.  相似文献   

3.
Metal complexes of Schiff base derived from condensation of o-vanilin (3-methoxysalicylaldehyde) and sulfametrole [N(1)-(4-methoxy-1,2,5-thiadiazole-3-yl)sulfanilamide] (H2L) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). From the elemental analyses data, the complexes were proposed to have the general formulae [M2X3(HL)(H2O)5].yH2O (where M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X=Cl, y=0-3); [Fe2Cl5(HL)(H2O)3].2H2O; [(FeSO4)2(H2L)(H2O)4] and [(UO2)2(NO3)3(HL)(H2O)].2H2O. The molar conductance data reveal that all the metal chelates were non-electrolytes. The IR spectra show that, H2L is coordinated to the metal ions in a tetradentate manner with ON and NO donor sites of the azomethine-N, phenolic-OH, enolic sulphonamide-OH and thiadiazole-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Salmonella typhi, Bacillus subtillus, Staphylococcus aureus and Fungi (Aspergillus terreus and Aspergillus flavus). The activity data show that the metal complexes to be more potent/antimicrobial than the parent Shciff base ligand against one or more microbial species.  相似文献   

4.
The synthesis and characterization of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pd(II) and UO2(II) chelates of 1-(2-thiazolylazo)-2-naphthalenol (TAN) were reported. The dissociation constants of the ligand and the stability constants of the metal complexes were calculated pH-metrically at 25 degrees C and 0.1 M ionic strength. The solid complexes were characterized by elemental and thermal analyses, molar conductance, IR, magnetic and diffuse reflectance spectra. The complexes were found to have the formulae [M(L)2] for M = Mn(II), Co(II), Ni(II), Zn(II) and Cd(II); [M(L)X].nH2O for M = Cu(II) (X = AcO, n = 3), Pd(II) (X = Cl, n = 0) and UO2(II) (X = NO3, n = 0), and [Fe(L)Cl2(H2O)].2H2O. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the ligand is coordinated to the metal ions in a terdentate manner with ONN donor sites of the naphthyl OH, azo N and thiazole N. An octahedral structure is proposed for Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II) and UO2(II) complexes and a square planar structure for Cu(II) and Pd(II) complexes. The thermal behaviour of these chelates shows that water molecules (coordinated and hydrated) and anions are removed in two successive steps followed immediately by decomposition of the ligand molecule in the subsequent steps. The relative thermal stability of the chelates is evaluated. The final decomposition products are found to be the corresponding metal oxides. The thermodynamic activation parameters, such as E*, delta H*, delta S* and delta G* are calculated from the TG curves.  相似文献   

5.
Four new azo ligands, L1 and HL2-4, of sulfa drugs have been prepared and characterized. [MX(2)(L1)(H(2)O)(m)].nH(2)O; [(MX(2))(2)(HL2 or HL3)(H(2)O)(m)].nH(2)O and [M(2)X(3)(L4)(H(2)O)].nH(2)O; M=Co(II), Ni(II) and Cu(II) (X=Cl) and Zn(II) (X=AcO); m=0-4 and n=0-3, complexes were prepared. Elemental and thermal analyses (TGA and DTA), IR, solid reflectance spectra, magnetic moment and molar conductance measurements have accomplished characterization of the complexes. The IR data reveal that HL1 and HL2-3 ligands behave as a bidentate neutral ligands while HL4 ligand behaves as a bidentate monoionic ligand. They coordinated to the metal ions via the carbonyl O, enolic sulfonamide S(O)OH, pyrazole or thiazole N and azo N groups. The molar conductance data reveal that the chelates are non-electrolytes. From the solid reflectance spectra and magnetic moment data, the complexes were found to have octahedral, tetrahedral and square planar geometrical structures. The thermal behaviour of these chelates shows that the water molecules (hydrated and coordinated) and the anions are removed in a successive two steps followed immediately by decomposition of the ligand in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the TG curves applying Coats-Redfern method.  相似文献   

6.
Mononuclear mixed ligand complexes of Ni(II) and Ce(III) with 4-(-3-methoxy-4-hydroxybenzylideneamino)-1,3-dimethyl-2,6-pyrimidine-dione, 2-aminopyridine and 8-hydroxyquinoline have been prepared. The elemental analysis, molar conductance, spectral (IR, mass and solid reflectance), magnetic moment measurements and thermal study were utilized to investigate the coordination behavior. All metal complexes have metal-to-ligand ratios of 1:1:1 and the modes of bonding are consistent with N- and O-donation suggesting monomeric octahedral and square planar structures. The thermal behavior of these complexes was investigated and the thermal decomposition pathways postulated. The activation thermodynamic parameters, E*, ΔH*, ΔS* and ΔG* for the different thermal decomposition steps of the complexes were calculated using the Coats-Redfern equation. Antibacterial and antifungal properties of the metal complexes have also been examined against Staphylococcus aureus (ATCC 25923), Streptococcus pyogenes (ATCC 19615), Pseudomonas fluorescens (S 97), Pseudomonas phaseolicola (GSPB 2828), Fusarium oxysporum and Aspergillus fumigatus. The highest antimicrobial activity was observed for the Ce(III) complex, [CeL(8-Oqu)(NO3)2]·1½H2O.  相似文献   

7.
The new complexes of moxifloxacin (MOX), with Ti(IV), Y(III), Pd(II) and Ce(IV) have been synthesized. These complexes were then characterized by melting point, magnetic studies and spectroscopic techniques involving infrared spectra (IR), UV-Vis, (1)H NMR. C, H, N and halogen elemental analysis and thermal behavior of complexes also investigated. The results suggested that the molar ratio for all complexes is M: MOX=1:2 where moxifloxacin acts as a bidentate via one of the oxygen atoms of the carboxylate group and through the ring carbonyl group and the complexes have the following formula [Ti(MOX)(2)](SO(4))(2)·7H(2)O, [Y(MOX)(2)Cl(2)]Cl·12H(2)O, [Pd(MOX)(2)(H(2)O)(2)]Cl(2)·6H(2)O and [Ce(MOX)(2)](SO(4))(2)·2H(2)O. The activation energies, E*, enthalpies, ΔH*, entropies, ΔS* and Gibbs free energies, ΔG*, of the thermal decomposition reactions have been derived from thermogravimetric (TGA) and differential thermogravimetric (DrTG) curves, using Coats-Redfern (CR) and Horowitz-Metzger (HM) methods. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and three Gram-negative bacteria and compared with the reference drug moxifloxacin. The antibacterial activity of Ti(IV) complex is significant for E. coli K32 and highly significant for S. aureus K1, B. subtilis K22, Br. otitidis K76, P. aeruginosa SW1 and K. oxytoca K42 compared with free moxifloxacin.  相似文献   

8.
Schiff base complexes of Cu(II), Ni(II) and Zn(II) with the o-hydroxyacetophenone [N-(3-hydroxy-2-naphthoyl)] hydrazone (H(2)o-HAHNH) containing N and O donor sites have been synthesized. Both ligand and its metal complexes were characterized by different physicochemical methods, elemental analysis, molar conductivity ((1)H NMR, (13)C NMR, IR, UV-visible, ESR, MS spectra) and also thermal analysis (TG and DTG) techniques. The discussion of the outcome data of the prepared complexes indicates that the ligand behave as a bidentate and/or tridentate ligand. The electronic spectra of the complexes as well as their magnetic moments suggest octahedral geometries for all isolated complexes. The room temperature solid state ESR spectrum of the Cu(II) complex shows d(x2-y2) as a ground state, suggesting tetragonally distorted octahedral geometry around Cu(II) centre. The molar conductance measurements proved that the complexes are non-electrolytes. The kinetic thermodynamic parameters such as: E(#), ΔH(#), ΔG(#), ΔS(#) are calculated from the DTG curves, for the [Ni(H(O)-HAHNH)(2)] and [Zn(H(2O)-HAHNH)(OAc)(2)]·H(2)O complexes using the Coats-Redfern equation. Also, the antimicrobial properties of all compounds were studied using a wide spectrum of bacterial and fungal strains. The [Cu(Ho-HAHNH)(OAc)(H(2)O)(2)] complex was the most active against all strains, including Aspergillus sp., Stemphylium sp. and Trichoderma sp. Fungi; E. coli and Clostridium sp. Bacteria.  相似文献   

9.
Keeping in view the chemotherapeutic of the sulfa-drugs, Schiff base namely 2-thiophene carboxaldehyde-sulfametrole (HL) and its tri-positive and di-positive metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA and DrTG). The low molar conductance values suggest the non-electrolytic nature of these complexes. IR spectra show that HL is coordinated to the metal ions in a tetradentate manner through hetero five-membered ring-S and azomethine-N, enolic sulfonamide-OH and thiadiazole-N, respectively. Zn(II), Cd(II) and UO2(II) complexes are found to be diamagnetic (as expected). The proposed general formulae of the prepared complexes are [M2X4(HL)(H2O)4] (where M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X=Cl, [Fe2Cl6(HL)(H2O)2], [(FeSO4)2(HL)(H2O)4] and [(UO2)2(HL) (NO3)4].H2O. The thermal behaviour of these chelates shows that the hydrated complexes loss water of hydration in first step in case of uranium complexes followed loss coordinated water followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as DeltaE*, DeltaH*, DeltaS*, and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The antimicrobial activity of the obtained products was performed using Chloramphenicol and Grisofluvine as standards, indicate that in some cases metallation increase activity than the ligand.  相似文献   

10.
Mn(II), Au(III) and Zr(III) complexes with N-benzoylglycine (hippuric acid) (abbreviation hipH) were synthesized and characterized by elemental analysis, molar conductivity, magnetic measurements, spectral methods (mid-infrared, (1)H NMR, mass, X-ray powder diffraction and UV/vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. The molar conductance measurements proved that all hippuric acid complexes are non-electrolytes. The electronic spectra and magnetic susceptibility measurements were used to infer the structures. The IR spectra of the ligand and its complexes are used to identify the type of bonding. The kinetic thermodynamic parameters such as: E*, DeltaH*, DeltaS* and DeltaG* are estimated from the DTG curves. The free ligand and its complexes have been studied for their possible biological antifungal activity.  相似文献   

11.
Metal complexes of Schiff base derived from 2-thiophene carboxaldehyde and 2-aminobenzoic acid (HL) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The ligand dissociation as well as the metal-ligand stability constants were calculated pH metrically at 25 degrees C and ionic strength mu=0.1 (1M NaCl). The complexes are found to have the formulae [M(HL)2](X)n.yH2O (where M=Fe(III) (X=Cl, n=3, y=3), Co(II) (X=Cl, n=2, y=1.5), Ni(II) (X=Cl, n=2, y=1) and UO2(II) (X=NO3, n=2, y=0)) and [M(L)2] (where M=Cu(II) (X=Cl) and Zn(II) (X=AcO)). The molar conductance data reveal that Fe(III) and Co(II), Ni(II) and UO2(II) chelates are ionic in nature and are of the type 3:1 and 2:1 electrolytes, respectively, while Cu(II) and Zn(II) complexes are non-electrolytes. IR spectra show that HL is coordinated to the metal ions in a terdentate manner with ONS donor sites of the carboxylate O, azomethine N and thiophene S. From the magnetic and solid reflectance spectra, it is found that the geometrical structure of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligands, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus pyogones and Fungi (Candida). The activity data show that the metal complexes to be more potent/antibacterial than the parent Schiff base ligand against one or more bacterial species.  相似文献   

12.
Complexes of ruthenium(III) with N,N'-disalicylidene-l,2-phenylenediamine (H2dsp), N,N'-disalicylidene-3,4-diaminotoluene (H2dst), 4-nitro-N,N'-disalicylidene-1,2-phenylenediamine (H2ndsp) and N,N'-disalicylidene ethylenediamine (H2salen) have been prepared and characterized by elemental analysis, molar conductivity, spectral methods (mid-infrared, 1H NMR and UV-vis spectra) and simultaneous thermal analysis (TG and DTG) techniques. The molar conductance measurements proved that all these complexes are non-electrolytes. The electronic spectra measurements were used to infer the structures. The IR spectra of the ligands and their complexes are used to identify the type of bonding. The kinetic thermodynamic parameters such as: E*, DeltaH*, DeltaS* and DeltaG* are estimated from the DTG curves. The four ligands and their complexes have been studied for their possible biological antifungal activity.  相似文献   

13.
The complexations of sulfasalazine (H3Suz) with some of transition metals have been investigated. Three types of complexes, [Mn(HSuz)-2(H2O)4] x 2H2O, [M(HSuz)-2(H2O)2] x xH2O (M=Hg(II), ZrO(II) and VO(II), x=4, 8 and 6, respectively) and [M(HSuz)-2(Cl)(H2O)3] x xH2O (M=Cr(III) and Y(III), x=5 and 6, respectively) were obtained and characterized by physicochemical and spectroscopic methods. The IR spectra of the complexes suggest that the H3Suz behaves as a bidentate ligand. The thermal decomposition of the complexes as well as thermodynamic parameters (DeltaE*, DeltaH*, DeltaS* and DeltaG*) were estimated using Coats-Redfern and Horowitz-Metzger equations. In vitro antimicrobial activities of the H3Suz and the complexes were tested.  相似文献   

14.
A phosphorus-containing Schiff base was prepared from bis{3-[2-(4-amino-1,5-dimethyl-2-phenylpyrazol-3-ylideneamino)ethyl]indol-1-ylmethyl}phosphinic acid and paraformaldehyde as a novel antibacterial compound. The reaction of the Schiff base ligand with VO(IV), Ni(II), Co(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II) and Pt(IV) led to binuclear species of metal complexes, depending on the ratio of metal ion and ligand. The ligand and its complexes were investigated using elemental analysis, Fourier transform infrared, 1H NMR, 13C NMR, UV–visible and mass spectra, thermogravimetric analysis, conductivity measurements and thermal analysis. The results showed that the Schiff base behaves as a tetradentate ligand; moreover, on the basis of conductance results, of all the prepared complexes are non-electrolytes, excepting the Pt(IV) complex. The metal complexes were found to be formed with a metal-to-ligand ratio of 2:1, except for the Pt(IV) complex with a ratio of 1:1. The activation thermodynamic parameters (ΔE*, ΔH*, ΔS*, ΔG* and K) and the activation energy of thermal decomposition were determined from thermogravimetric analysis using the Coats–Redfern method. The biological activities of the metal complexes were screened against the growth of bacteria and fungi in vitro to assess the antimicrobial potential and study the toxicity of the compounds. The prepared compounds have noteworthy antimicrobial properties.  相似文献   

15.
The synthesis and structural characterization of mixed ligand complexes derived from 2,6-pyridinedicarboxaldehydebis(o-hydroxyphenylimine), 2,6-pyridinedicarboxaldehydebis(p-hydroxyphenylimine) (1(ry) ligands) and 2-aminopyridne (2(ry) ligand) are reported. The ligands and their transition metal complexes were characterized on the bases of their elemental analyses, IR, solid reflectance, magnetic moment, molar conductance and thermal analysis (TGA). The mixed ligand complexes are formed in the 1:1:1 (M:L(1) or L(2):L') ratio as found from the elemental analyses and found to have the formulae [MX(2)(L(1) or L(2))(L')].nH(2)O where M = Co(II), Ni(II), Cu(II) and Zn(II), L(1) = 2,6-pyridinedicarboxaldehydebis(p-hydroxyphenylimine), L(2) = 2,6-pyridine dicarboxaldehydebis(o-hydroxyphenylimine), L' = 2-aminopyridine, X = Cl(-) in case of Cu(II) complex and Br(-) in case of Co(II), Ni(II) and Zn(II) complexes and y = 0-3. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the Schiff bases are coordinated to the metal ions in a terdentate manner with NNN donor sites of the pyridine-N and two azomethine-N. While 2-aminopyridine coordinated to the metal ions via its pyridine-N. Magnetic and solid reflectance spectra are used to infer the coordinating capacity of the ligand and the geometrical structure of these complexes are found to be octahedral. The thermal behaviour of these chelates shows that the hydrated water molecules and the anions are removed in a successive two steps followed immediately by decomposition of the ligands (L(1), L(2) and L') in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the TG curves and discussed. The ligands and their metal chelates have been screened for their antimicrobial activities and the findings have been reported, explained and compared with some known antibiotics.  相似文献   

16.
Complexes of Co(II), Ni(II), Cu(II), Mn(II), Cd(II), Zn(II), Hg(II) and U(IV)O(2)(2+) with N'-(1-(4-hydroxyphenyl) ethylidene)-2-oxo-2-(phenylamino) acetohydrazide (H(3)OPAH) are reported and have been characterized by various spectroscopic techniques like IR, UV-visible, (1)H NMR and ESR as well as magnetic and thermal (TG and DTA) measurements. It is found that the ligand behaves as a neutral bidentate, monoanionic tridentate or tetradentate and dianionic tetradentate. An octahedral geometry for [Mn(H(3)OPAH)(2)Cl(2)], [Co(2)(H(2)OPAH)(2)Cl(2)(H(2)O)(4)] and [(UO(2))(2)(HOPAH)(OAc)(2)(H(2)O)(2)] complexes, a square planar geometry for [Cu(2)(H(2)OPAH)Cl(3)(H(2)O)]H(2)O complex, a tetrahedral structure for [Cd(H(3)OPAH)Cl(2)], [Zn(H(3)OPAH)(OAc)(2)] and [Hg(H(3)OPAH)Cl(2)]H(2)O complexes. The binuclear [Ni(2)(HOPAH)Cl(2)(H(2)O)(2)]H(2)O complex contains a mixed geometry of both tetrahedral and square planar structures. The protonation constants of ligand and stepwise stability constants of its complexes at 298, 308 and 318 K as well as the thermodynamic parameters are being calculated. The bond lengths, bond angles, HOMO, LUMO and dipole moments have been calculated to confirm the geometry of the ligand and the investigated complexes. Also, thermal properties and decomposition kinetics of all compounds are investigated. The interpretation, mathematical analysis and evaluation of kinetic parameters (E(a), A, ΔH, ΔS and ΔG) of all thermal decomposition stages have been evaluated using Coats-Redfern and Horowitz-Metzger methods.  相似文献   

17.
New metal complexes derived from the reaction of N-[(phenylamino)thioxomethyl] hydrazino carbonyl methyl pyridinium chloride (H2L; PTHMPC) with some metal salts of the general formula MX2 [(X = Cl? and/or CH3COO?; M = Cd(II), UO2(II), Mn(II) and Zr(IV)] were synthesized and characterized by elemental analyses, spectral analyses (IR, UV-vis., 1H NMR), thermal analyses (TGA, DTG), and conductance and magnetic measurements. The results showed that the ligand exists in metal complexes either in the keto form or in the enol form. Moreover, the IR spectral data suggest that the acetate ion behaves in a monodentate manner. Semi-empirical calculations ZINDO/1, PM3, and AM1 have been used to study the molecular geometry and the harmonic vibrational spectra of the ligand and its metal complexes with the purpose of assisting the experimental assignment of the complexes. Generally, there is an agreement between the observed and the calculated spectra. Finally, the thermodynamic parameters (ΔE*, ΔH, ΔG, and ΔS) have been calculated from the data of thermal analyses (TGA and DTG).

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

18.
In this work, (Z)‐N‐benzoyl‐N′‐(1H‐1,2,4‐triazol‐3‐yl)carbamimidothioic acid and its Mn(II), Co(II), Cu(II) and Cd(II) complexes were introduced for the first time. This carbonyl thiourea ligand was prepared by the reaction of 1H‐1,2,4‐triazol‐3‐amine with benzoyl isothiocyanate. The structural elucidation of these compounds was performed using elemental analysis and spectral and magnetic measurements. Octahedral structures of all complexes, except Cd(II) complex with a tetrahedral geometry, were confirmed by applying DFT structural optimization. The thermal decomposition behaviour of metal complexes of carbonyl thiourea ligand is discussed. The calculation of kinetic parameters for prepared complexes (Ea, A, ΔH*, ΔS* and ΔG*) of all thermal degradation stages has been evaluated using two comparable approaches. Antimicrobial and ABTS‐antioxidant studies indicated potent activity of Cd(II) complex compared with the other investigated compounds. The cytotoxic activity of the prepared compounds was investigated in vitro. The results indicated potent activity of Mn(II) complex against both HePG2 (liver carcinoma) and MCF‐7 (breast carcinoma) cancer cells.  相似文献   

19.
The preparation and characterization of the new solid complexes [Y(CIP)2(H2O)2]Cl(3)·10H2O and [ZrO(CIP)2Cl]Cl·15H2O formed in the reaction of ciprofloxacin (CIP) with YCl3 and ZrOCl(2)·8H2O in ethanol and methanol, respectively, at room temperature were reported. The isolated complexes have been characterized with elemental analysis, IR spectroscopy, conductance measurements, UV-vis and 1H NMR spectroscopic methods and thermal analyses. The results support the formation of the complexes and indicate that ciprofloxacin reacts as a bidentate ligand bound to the metal ion through the pyridone oxygen and one carboxylato oxygen. The activation energies, E*; entropies, ΔS*; enthalpies, ΔH*; Gibbs free energies, ΔG*, of the thermal decomposition reactions have been derived from thermogravimetric (TGA) and differential thermogravimetric (DTG) curves, using Coats-Redfern and Horowitz-Metzeger methods. The proposed structure of the two complexes was detected by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The ligand as well as their metal complexes was also evaluated for their antibacterial activity against several bacterial species, such as Staphylococcus aureus (S. aureus), Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) and antifungal screening was studied against two species (Penicillium (P. rotatum) and Trichoderma (T. sp.)). This study showed that the metal complexes are more antibacterial as compared to free ligand and no antifungal activity observed for ligand and their complexes.  相似文献   

20.
The mixed ligand mononuclear complex [Mn(bipy)(HPMFP)(OAc)]ClO(4) was synthesized by reaction of Mn(OAc)(3)·2H(2)O with HPMFP and 2,2'-bipyridyl. The corresponding Schiff base complexes were prepared by condensation of [Mn(bipy)(HPMFP)(OAc)]ClO(4) with ethylenediamine, ethanolamine and glycine (where HPMFP=1-phenyl-3methyl-4-formyl-2-pyrazolin-5one, bipy=2,2'-bipyridyl). All the compounds have been characterized by elemental analysis, magnetic susceptibility, conductometry measurements and (1)H and (13)C NMR, FT-IR, mass spectrometry. Electronic spectral and magnetic susceptibility measurements indicate square pyramidal geometry around manganese(III) ion. The thermal stabilities, activation energy E*, entropy change ΔS*, enthalpy change ΔH* and heat capacity of thermal degradation for these complexes were determined by TGA and DSC. The in vitro antibacterial and antifungal activity of four coordination compounds and ligand HPMFP were investigated. In vitro activates of Bacillus subtillis (MTCC-619), Staphylococcus aureus (MTCC-96), Escherichia coli (MTCC-722) and Klebsiella pneumonia (MTCC-109) bacteria and the fungus Candida albicans (ATCC-90028) were determined. All the compounds showed good antimicrobial activity. The antimicrobial activities increased as formation of Schiff base.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号