首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have synthesized and structurally characterized three pyridylethylidene-functionalized diphosphonate-containing polyoxomolybdates, [{Mo(VI)O(3)}(2){Mo(V)(2)O(4)}{HO(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)](6-) (1), [{Mo(VI)(2)O(6)}(2){Mo(V)(2)O(4)}{O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)](8-) (2), and [{Mo(V)(2)O(4)(H(2)O)}(4){O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(4)](12-) (3). Polyanions 1-3 were prepared in a one-pot reaction of the dinuclear, dicationic {Mo(V)(2)O(4)(H(2)O)(6)}(2+) with 1-hydroxo-2-(3-pyridyl)ethylidenediphosphonate (Risedronic acid) in aqueous solution. Polyanions 1 and 2 are mixed-valent Mo(VI/V) species with open tetranuclear and hexanuclear structures, respectively, containing two diphosphonate groups. Polyanion 3 is a cyclic octanuclear structure based on four {Mo(V)(2)O(4)(H(2)O)} units and four diphosphonates. Polyanions 1 and 2 crystallized as guanidinium salts [C(NH(2))(3)](5)H[{Mo(VI)O(3)}(2){Mo(V)(2)O(4)}{HO(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)]·13H(2)O (1a) and [C(NH(2))(3)](6)H(2)[{Mo(VI)(2)O(6)}(2){Mo(V)(2)O(4)}{O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)]·10H(2)O (2a), whereas polyanion 3 crystallized as a mixed sodium-guanidinium salt, Na(8)[C(NH(2))(3)](4)[{Mo(V)(2)O(4)(H(2)O)}(4){O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(4)]·8H(2)O (3a). The compounds were characterized in the solid state by single-crystal X-ray diffraction, IR spectroscopy, and thermogravimetric and elemental analyses. The formation of polyanions 1 and 3 is very sensitive to the pH value of the reaction solution, with exclusive formation of 1 above pH 7.4 and 3 below pH 6.6. Detailed solution studies by multinuclear NMR spectrometry were performed to study the equilibrium between these two compounds. Polyanion 2 was insoluble in all common solvents. Detailed computational studies on the solution phases of 1 and 3 indicated the stability of these polyanions in solution, in complete agreement with the experimental findings.  相似文献   

2.
We report the syntheses and characterizations of the first polyoxothiometalate complexes isolated from the reaction of the oxothiocationic [Mo(V)(2)O(2)S(2)](2+) precursor and bisphosphonate ligands H(2)O(3)PCR(OH)PO(3)H(2) (R = C(4)H(5)N(2), zoledronic acid; R = C(3)H(6)NH(2), alendronic acid). [(Mo(2)O(2)S(2)(H(2)O))(4)(O(3)PC(O)(C(4)H(6)N(2))PO(3))(4)](8-) (Mo(8)S(8)(Zol)(4)) and [(Mo(2)O(2)S(2)(H(2)O))(4)(O(3)PC(O)(C(3)H(6)NH(3))PO(3))(4)](8-) (Mo(8)S(8)(Ale)(4)) contain four Mo(V) dimers connected via bisphosphonate ligands. These compounds offer a unique opportunity to compare the structures and properties of cyclic compounds obtained with [Mo(2)O(2)S(2)](2+) and with [Mo(2)O(4)](2+). The oxothio compounds appear less stable in solution than the oxo analogue, confirming the higher lability and versatility of [Mo(2)O(2)S(2)]-based compounds compared to [Mo(2)O(4)]-based POMs. Multinuclear and multidimensional solid-state NMR studies were carried out to complement X-ray diffraction analysis. Information on short-range interactions, dynamic behaviors, and local disorder within the crystalline materials are therefore reported. Furthermore, the electrocatalytic properties of Mo(8)S(8)(Ale)(4) and of the analogous [(Mo(2)O(4)(H(2)O))(4)(O(3)PC(O)(C(3)H(6)NH(3))PO(3))(4)](8-) (Mo(8)O(8)(Ale)(4)) immobilized onto the surface of a glassy carbon electrode were studied, thus evidencing the ability of [Mo(2)O(2)S(2)]-based cycles to promote the reduction of protons into hydrogen, whereas the oxo analogue appeared inactive.  相似文献   

3.
Two asymmetric polyoxomolybdates Na(6){Mo(2)O(5)[(Mo(2)O(6))NH(3)CH(2)CH(2)CH(2)C(O)(PO(3))(2)](2)}·16H(2)O (1) and (NH(4))(7)Na{MoO(2)[(Mo(2)O(6))NH(3)CH(2)CH(2)CH(2)C(O)(PO(3))(2)]}(4)·H(2)O (2) have been synthesized by the reactions of alendronic acid with molybdate. Structure analysis revealed that the polyoxoanions 1 and 2 can be described as dimeric and tetrameric aggregates of the {MoO(3)[(Mo(2)O(6))NH(3)CH(2)CH(2)CH(2)C(O)(PO(3))(2)]} units respectively. Their tetrabutylammonium salts show efficient selective oxidation of benzyl alcohol to benzaldehyde with 72.5% and 81.5% benzyl alcohol conversion, and 87.1% and 82.4% benzaldehyde selectivity, respectively.  相似文献   

4.
Reaction of Na(2)Mo(VI)O(4) x 2H(2)O with (NH(4))(2)SO(3) in the mixed-solvent system H(2)O/CH(3)CN (pH = 5) resulted in the formation of the tetranuclear cluster (NH(4))(4)[Mo(4)(VI)SO(16)] x H(2)O (1), while the same reaction in acidic aqueous solution (pH = 5) yielded (NH(4))(4)[Mo(5)(VI)S(2)O(21)] x 3H(2)O (2). Compound {(H(2)bipy)(2)[Mo(5)(VI)S(2)O(21)] x H(2)O}(x) (3) was obtained from the reaction of aqueous acidic solution of Na(2)Mo(VI)O(4) x 2H(2)O with (NH(4))(2)SO(3) (pH = 2.5) and 4,4'-bipyridine (4,4'-bipy). The mixed metal/sulfite species (NH(4))(7)[Co(III)(Mo(2)(V)O(4))(NH(3))(SO(3))(6)] x 4H(2)O (4) was synthesized by reacting Na(2)Mo(VI)O(4) x 2H(2)O with CoCl(2) x 6H(2)O and (NH(4))(2)SO(3) with precise control of pH (5.3) through a redox reaction. The X-ray crystal structures of compounds 1, 2, and 4 were determined. The structure of compound 1 consists of a ring of four alternately face- and edge-sharing Mo(VI)O(6) octahedra capped by the trigonal pyramidal sulfite anion, while at the base of the Mo(4) ring is an oxo group which is asymmetrically shared by all four molybdenum atoms. Compound 3 is based on the Strandberg-type heteropolyion [Mo(5)(VI)S(2)O(21)](4-), and these coordinatively saturated clusters are joined by diprotonated 4,4'-H(2)bipy(2+) through strong hydrogen bonds. Compound 3 crystallizes in the chiral space group C2. The structure of compound 4 consists of a novel trinuclear [Co(III)Mo(2)(V)SO(3)(2-)] cluster. The chiral compound 3 exhibits nonlinear optical (NLO) and photoluminescence properties. The assignment of the sulfite bands in the IR spectrum of 4 has been carried out by density functional calculations. The cobalt in 4 is a d(6) octahedral low-spin metal atom as it was evidenced by magnetic susceptibility measurements, cw EPR, BVS, and DFT calculations. The IR and solid-state UV-vis spectra as well as the thermogravimetric analyses of compounds 1-4 are also reported.  相似文献   

5.
Lu X  Shi X  Min T 《Inorganic chemistry》2011,50(6):2175-2181
Nanoaggregates such as nanowires, nanoparticles, nanotubules, and nanoribbons were prepared from bulk crystals, which are shaped as needles (1), blocks (2), tubules (3α), and plates (3β), respectively, by grinding and ultrasonication. Nanowires have diameters of approximately 2 nm, lengths of thousands of nanmeters, and the distance between adjacent nanowires is approximately 2 nm. The diameters of nanoparticles range from 3 to 5 nm. Nanotubules display diameters of 70 nm and lengths of thousands of nanometers, and nanoribbons exhibit widths of approximately 50 nm and lengths of hundreds of nanometers. All of the bulk crystals have been synthesized by the wet chemical method. Single-crystal X-ray diffraction reveals that crystal 1 is constituted by infinite one-dimensional {[NH(3)CH(2)CH(NH(2))CH(3)](C(6)H(4)O(2))[μ(2)-OC(6)H(4)O](Mo(VI)-O-Na-O)[NH(2)CH(2)CH(NH(2))CH(3)]}(n) (1), which acts as a parallel aligned quantum wire forming lamellas that assemble themselves into multilayered architecture. Crystal 2 consists of discrete [NH(3)CH(2)CH(NH(2))CH(3)](2)[Mo(VI)O(2)(O(2)C(6)H(4))(2)] (2), which presents as quantum particles and repeats itself along a three-dimensional crystal lattice. Crystal 3α, formed under 5 °C, and 3β, crystallized above 10 °C, are both composed of (NH(3)CH(2)CH(2)NH(2))(2)[Mo(VI)O(2)(O(2)C(6)H(4))(2)](NH(2)CH(2)CH(2)NH(2))(0.5) (3) but are packed in different ways. In crystal 3α, four [Mo(VI)O(2)(O(2)C(6)H(4))(2)](2-) circle into a quantum tube that is further assembled into multitubular architecture. However, in crystal 3β, two [Mo(VI)O(2)(O(2)C(6)H(4))(2)](2-) form a bilayered quantum lamellar motif that is piled into multilayered architecture. TEM reveals that all of the morphologies of the nanoaggregates are associated with the structures of the quantum motifs in their crystal lattices, which provide successful and effective access to assemble controlled nanostructures from quantum motifs of fine-desired and well-ordered bulk crystals. The technology of grinding and ultrasonication to prepare nanoaggregates is simple and available.  相似文献   

6.
Two new dirhodium(II) catalysts of general formula Rh(2)(N-O)(2)[(C(6)H(4))P(C(6)H(5))(2)](2) (N-O = C(4)H(4)NO(2)) are prepared, starting from Rh(2)(O(2)CCH(3))(2)(PC)(2)L(2) [PC = (C(6)H(4))P(C(6)H(5))(2) (head-to-tail arrangement); L = HO(2)CCH(3)]. The thermal reaction of Rh(2)(O(2)CCH(3))(2)(PC)(2).L(2) with the neutral succinimide stereoselectively gives one compound that according to the X-ray structure determination has the formula Rh(2)(C(4)H(4)NO(2))(2)[(C(6)H(4))P(C(6)H(5))(2)](2) (1). It corresponds to the polar isomer with two bridging imidate ligands in a head-to-head configuration. However, stepwise reaction of Rh(2)(O(2)CCH(3))(2)(PC)(2).L(2) with (CH(3))(3)SiCl and potassium succinimidate yields a mixture of 1 and one of the two possible isomers (structure B) with a head-to-tail configuration of the imidate ligands, Rh(2)(C(4)H(4)NO(2))(2)[(C(6)H(4))P(C(6)H(5))(2)](2) (2), also characterized by X-ray methods. In solution, compound 2 undergoes slow isomerization to 1; the rate of this process is enhanced by the presence of acetonitrile. Compounds 1 and 2 are obtained as pure enantiomers starting from (M)- and (P)-Rh(2)(O(2)CCH(3))(2)(PC)(2).L(2) rather than from the racemic mixture. Their enantioselectivities in cyclopropanation of 1-diazo-5-penten-2-one are similar to those reported for the dirhodium amidate catalysts.  相似文献   

7.
Three supramolecular materials based on different poly(oxomolybdophosphate) clusters, (H(2)imi)(6)(Himi)(4)[{Sr(H(2)O)(4)}(2){Sr ? P(6)Mo(4)(V)Mo(14)(VI)O(73)}(2)]·17H(2)O (1), (H(2)(4,4'-bpy))(2)[Cu(2)Sr(2)Mo(12)O(24)·(OH)(6)(H(2)O)(6)(H(2)PO(4))(2)(HPO(4))(2)(PO(4))(4)]·5H(2)O (2), and (H(2)bim)(H(2)bim)[SrP(2)Mo(5)O(23)(H(2)O)(3)]·2H(2)O (3) (imi = imidazole, 4,4'-bpy = 4,4'-bipyridine, and bim = 2,2'-biimidazole), have been hydrothermally synthesized and structurally characterized by the elemental analysis, TG, IR, UV-vis, XPS and the single-crystal X-ray diffraction. Compound 1 is made up of unusual basket-shape [Sr ? P(6)Mo(18)O(73)](10-) cages linked by [Sr(H(2)O)(4)](2+) fragments to yield unprecedented dimeric chains, which represent the first 1-D assemblies of basket-type POMs. Compound 2 exhibits a novel string constructed from sandwich-like [Cu(P(4)Mo(6)O(31))(2)] units and {Sr(2)Cu} trinuclear linkers. Compound 3 is the first chain of Strandberg-type polyoxoanions connected by Sr(2+) cations. All the 1-D chains are further packed into various 3-D supramolecular assemblies via strong hydrogen-bonding interactions. The electrochemical and electrocatalysis behavior of 1, 2, and 3-CPE have been investigated in detail.  相似文献   

8.
The reactions of (NH(4))(2)Mo(2)O(7)·2H(2)O with polyhydroxy phenols (catechol or 2,3-dihydroxynaphthalene) and ethylenediamine (en), trimethylenediamine (tn), 1,2-propanediamine (pn), triethylamine (Et(3)N) respectively, in the mixed-solvent of MeCN-EtOH-amine, have resulted in five molybdenum(VI) complexes, (enH(2))[Mo(VI)O(3)(cat)(en)] (1), (tnH(2))[Mo(VI)O(3)(cat)(tn)] (2), (enH)(2)[Mo(VI)O(2)(cat)(2)](en)(0.5) (3), (pnH(2))(2)[Mo(VI)O(2)(cat)(2)] (4) and (HNEt(3))(2)[Mo(VI)O(2)(C(10)H(8)O(2))(2)] (5), of which the structural features were investigated by X-ray diffraction. MTT assay tests indicated that their inhibition ratios against human cancer cells decreased in the order: (1) ≈ (2) > (3) ≈ (4) > (5), i.e. the activities decreased when the chelation number or the size of the aromatic ligand increased, which was consistent with the Gibbs free energies (ΔG) determined from theoretical computations by Gaussian 03. The mechanisms behind this trend were discussed preliminarily.  相似文献   

9.
Two neutral silver(I)-phenylethynide clusters incorporating the [((t)BuPO(3))(4)V(4)O(8)](4-) unit as an integral shell component, namely {(NO(3))(2)@Ag(16)(C≡CPh)(4)[((t)BuPO(3))(4)V(4)O(8)](2)(DMF)(6)(NO(3))(2)}·DMF·H(2)O and {[(O(2))V(2)O(6)](3)@Ag(43)(C≡CPh)(19)[((t)BuPO(3))(4)V(4)O(8)](3)(DMF)(6)}·5DMF·2H(2)O, have been isolated and characterized by X-ray crystallography. The central cavities of the Ag(16) and Ag(43) clusters are occupied by two NO(3)(-) and three [(O(2))V(2)O(6)](4-) template anions, respectively.  相似文献   

10.
Four coordination networks based on the {ε-PMo(V)(8)Mo(VI)(4)O(40)(OH)(4)Zn(4)} Keggin unit (εZn) have been synthesized under hydrothermal conditions. (TBA)(3){PMo(V)(8)Mo(VI)(4)O(36)(OH)(4)Zn(4)}[C(6)H(4)(COO)(2)](2) (ε(isop)(2)) is a 2D material with monomeric εZn units connected via 1,3 benzenedicarboxylate (isop) linkers and tetrabutylammonium (TBA) counter-cations lying between the planes. In (TPA)(3){PMo(V)(8)Mo(VI)(4)O(37)(OH)(3)Zn(4)}[C(6)H(3)(COO)(3)] (TPA[ε(trim)](∞)), 1D inorganic chains formed by the connection of εZn POMs, via Zn-O bonds, are linked via 1,3,5 benzenetricarboxylate (trim) ligands into a 2D compound with tetrapropylammonium (TPA) cations as counter-cations. (TBA){PMo(V)(8)Mo(VI)(4)O(40)Zn(4)}(C(7)H(4)N(2))(2)(C(7)H(5)N(2))(2)·12H(2)O (ε(bim)(4)) is a molecular material with monomeric εZn POMs bound to terminal benzimidazole (bim) ligands. Finally, (TBA)(C(10)H(10)N(4))(2)(HPO(3)){PMo(V)(8)Mo(VI)(4)O(40)Zn(4)}(2)(C(10)H(9)N(4))(3)(C(10)H(8)N(4)) (ε(2)(pazo)(4)) is a 1D compound with dimeric (εZn)(2) POMs connected by HPO(3)(2-) ions and terminal para-azobipyridine (pazo) ligands. In this compound an unusual bond cleavage of the central N[double bond, length as m-dash]N bond of the pazo ligand is observed. We report also a green chemistry-type one-step synthesis method carried out in water at room temperature using ε(2)(pazo)(4) and ε(isop)(2) as reducing agent of graphite oxide (GO) to obtain graphene (G). The POM@G hybrids were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, powder X-ray diffraction, energy dispersive X-ray analysis, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and cyclic voltammetry.  相似文献   

11.
Interaction of [Ce(L(OEt))(2)(NO(3))(2)] (L(OEt)(-) = [Co(eta(5)-C(5)H(5)){P(O)(OEt)(2)}(3)](-)) with (NH(4))(6)[Mo(7)O(24)] in water affords the cerium(iv)-containing oxomolybdenum cluster [H(4)(CeL(OEt))(6)Mo(9)O(38)], which exhibits a unique Ce(6)Mo(9)O(38) core structure.  相似文献   

12.
Two compounds of a new type, [Mo(2)](CH(3)O)(2)M(CH(3)O)(2)[Mo(2)] where [Mo(2)] is an abbreviation for Mo(2)[(p-MeOC(6)H(4))NCHN(p-MeOC(6)H(4))](3) and M = Zn (1) and Co (2), are reported. Discrete [M(OR)(4)](2-) ions, either as such or in the mu(2),eta(4) role, have not heretofore been described. In these compounds they have distorted tetrahedral structures and bridge two [Mo(2)] groups in much the same way as did SO(4)(2-), MoO(4)(2-), and WO(4)(2-) ions in other recently reported compounds (Cotton, F. A.; Donahue, J. P.; Murillo, C. A. Inorg. Chem. 2001, 40, 2229). The (1)H NMR spectrum of 1 and the visible spectrum and magnetic properties of 2 are consistent with these structures. The M(OCH(3))(4) bridges are moderately effective in coupling the two [Mo(2)] redox centers. Compounds 1 and 2 may also be viewed as having Zn(II) and Co(II) centers tetrahedrally coordinated by the bidentate ligand [Mo(2)[(p-MeOC(6)H(4))NCHN(p-MeOC(6)H(4))](3)(OMe)(2)](-). From that point of view they may be compared with Zn(DPM)(2) and Co(DPM)(2) (3), where DPM is the anion of dipivaloylmethane. For purposes of comparison, 3 has been fully characterized structurally, spectroscopically, and magnetically. Close analogies between 2 and 3 are shown to exist.  相似文献   

13.
Mo(VI)(S(2)C(6)H(4))(3) reacts cleanly and completely with H(2)O in THF to afford [H(3)O](+)[Mo(V)(S(2)C(6)H(4))(3)](-). Kinetic data were fit by the rate equation -d[Mo(VI)(S(2)C(6)H(4))(3)]/dt = k[Mo(VI)(S(2)C(6)H(4))(3)]/[H(3)O(+)], which is consistent with a coupled electron-proton transfer mechanism involving a coordinated H(2)O molecule. The Mo(VI)(S(2)C(6)H(4))(3) reduction is accelerated by the presence of PPh(3) and affords OPPh(3). (18)O isotope tracing shows that H(2)O is the source of oxygen transferred to PPh(3).  相似文献   

14.
Single crystals of (NH(4))(4)[(UO(2))(5)(MoO(4))(7)](H(2)O)(5) have been synthesized hydrothermally using (NH(4))(6)Mo(7)O(24), (UO(2))(CH(3)COO)(2).2H(2)O, and H(2)O at 180 degrees C. The phase has been characterized by single-crystal X-ray diffraction using a merohedrally twinned single crystal: it is hexagonal, P6(1), a = 11.4067(5) A, c = 70.659(5) A, V = 7961.9(7) A(3), and Z = 6. The structure is based upon an open framework with composition [(UO(2))(5)(MoO(4))(7)](4-) that is composed of UO(7) pentagonal bipyramids that share vertexes with MoO(4) tetrahedra. The framework has large channels (effective pore size: 4.8 x 4.8 A(2)) parallel to the c axis and a system of smaller channels (effective pore size: 2.5 x 3.6 A(2)) parallel to [100], [110], [010], [110], [110], and [110]. The channels are occupied by NH(4)(+) cations and H(2)O molecules. The topological structure of the uranyl molybdate framework can be described either in terms of fundamental chains of UO(7) pentagonal bipyramids and MoO(4) tetrahedra or in terms of tubular building units parallel to the c axis.  相似文献   

15.
Reactions of copper(II) with 3-phenylhydrazopentane-2,4-diones X-2-C(6)H(4)-NHN=C{C(=O)CH(3)}(2) bearing a substituent in the ortho-position [X = OH (H(2)L(1)) 1, AsO(3)H(2) (H(3)L(2)) 2, Cl (HL(3)) 3, SO(3)H (H(2)L(4)) 4, COOCH(3) (HL(5)) 5, COOH (H(2)L(6)) 6, NO(2) (HL(7)) 7 or H (HL(8)) 8] lead to a variety of complexes including the monomeric [CuL(4)(H(2)O)(2)]·H(2)O 10, [CuL(4)(H(2)O)(2)] 11 and [Cu(HL(4))(2)(H(2)O)(4)] 12, the dimeric [Cu(2)(H(2)O)(2)(μ-HL(2))(2)] 9 and the polymeric [Cu(μ-L(6))](n)] 13 ones, often bearing two fused six-membered metallacycles. Complexes 10-12 can interconvert, depending on pH and temperature, whereas the Cu(II) reactions with 4 in the presence of cyanoguanidine or imidazole (im) afford the monomeric compound [Cu(H(2)O)(4){NCNC(NH(2))(2)}(2)](HL(4))(2)·6H(2)O 14 and the heteroligand polymer [Cu(μ-L(4))(im)](n)15, respectively. The compounds were characterized by single crystal X-ray diffraction (complexes), electrochemical and thermogravimetric studies, as well as elemental analysis, IR, (1)H and (13)C NMR spectroscopies (diones) and ESI-MS. The effects of the substituents in 1-8 on the HOMO-LUMO gap and the relative stability of the model compounds [Cu(OH)(L(8))(H(2)O)]·H(2)O, [Cu(L(1))(H(2)O)(2)]·H(2)O and [Cu(L(4))(H(2)O)(2)]·H(2)O are discussed on the basis of DFT calculations that show the stabilization follows the order: two fused 6-membered > two fused 6-membered/5-membered > one 6-membered metallacycles. Complexes 9, 10, 12 and 13 act as catalyst precursors for the peroxidative oxidation (with H(2)O(2)) of cyclohexane to cyclohexanol and cyclohexanone, in MeCN/H(2)O (total yields of ca. 20% with TONs up to 566), under mild conditions.  相似文献   

16.
A yellow [(HPO(3))(2)(P(2)O(7))Mo(30)O(90)](8-) anion was prepared as a tetrapropylammonium (Pr(4)N(+)) salt from a 50 mM Mo(VI)-2 mM P(2)O(7)(4-)-4 mM HPO(3)(2-)-0.95 M HCl-60% (v/v) CH(3)CN system at ambient temperature. The (Pr(4)N)(8)[(HPO(3))(2)(P(2)O(7))Mo(30)O(90)] salt crystallized in the orthorhombic space group P(nma) (No. 62), with a = 30.827(2) A, b = 22.8060(15) A, c = 30.928(2) A, V = 21743(3) A(3), and Z = 4. The structure contained a (P(2)O(7))Mo(12)O(42) fragment derived from the removal of each corner-shared Mo(3)O(13) unit in a polar position from a [(P(2)O(7))Mo(18)O(54)](4-) structure, and each side of the (P(2)O(7))Mo(12)O(42) fragment was capped by a B-type (HPO(3))Mo(9)O(24) unit. The [(HPO(3))(2)(P(2)O(7))Mo(30)O(90)](8-) anion was characterized by voltammetry and IR, UV-vis, and (31)P NMR spectroscopy. Unlike the Keggin and Dawson anions and the parent [(P(2)O(7))Mo(18)O(54)](4-) anion, the [(HPO(3))(2)(P(2)O(7))Mo(30)O(90)](8-) anion exhibited two-electron redox waves in CH(3)CN with and without acid.  相似文献   

17.
Novel molybdenum dithiolene compounds having neighboring amide groups as models for molybdoenzymes, (NEt(4))(2)[Mo(IV)O{1,2-S(2)-3,6-(RCONH)(2)C(6)H(2)}(2)] (R = CH(3), CF(3), t-Bu, Ph(3)C), were designed and synthesized. The contributions of the NH...S hydrogen bond to the electrochemical properties of the metal ion and the reactivity of the O-atom-transfer reaction were investigated by a comparison with [Mo(IV)O(1,2-S(2)C(6)H(4))(2)](2)(-). The MoOS(4) core of [Mo(IV)O{1,2-S(2)-3,6-(CH(3)CONH)(2)C(6)H(2)}(2)](2)(-) shows no significant geometrical difference from that of [Mo(IV)O(1,2-S(2)C(6)H(4))(2)](2)(-) in the crystal. The hydrogen bonds positively shifted the Mo(IV/V) redox potential and accelerated the reduction of Me(3)NO.  相似文献   

18.
Three inorganic-organic hybrid solids based on tetravanadate polyanions, {V(4)O(12)}(4-) and cucurbituril, Me(10)Q[5] and Q[5], namely (NH(4))(4)[(V(4)O(12))·(Me(10)Q[5]@0.5H(2)O)(2)]·~13H(2)O (1), Li(4)(H(2)O)(5)[(V(4)O(12))·(Me(10)Q[5]@H(2)O)(2)]·~20H(2)O (2), and Na(4)(H(2)O)(2)[(V(4)O(12))·(Q[5])(2)]·~15H(2)O (3), have been synthesized under hydrothermal conditions. In the structure of compound 1, two {Me(10)Q[5]@0.5H(2)O} moieties connect to one {V(4)O(12)}(4-) cluster through an NH(4)(+) counter-cation to form a trimer unit, which further forms a three-dimensional (3D) supramolecular architecture via extensive hydrogen bonds (H-bonds). Compound 2 contains a one-dimensional (1D) covalently bonded chain structure built by alternate {Me(10)Q[5]@H(2)O} moieties and {Li(2)O(4)(H(2)O)(3)}(2+) dimer units. The anionic {V(4)O(12)}(4-) units bond to every another {Li(2)O(4)(H(2)O)(3)}(2+) dimer unit sitting on the chain through multi-uncoordinated water molecules via H-bonds. Compound 3 is built from {V(4)O(12)}(4-) clusters, Q[5], and sodium cations into a two-dimensional (2D) covalent wavy structure, showing interesting connection between the building units, which is packed into 2D through plentiful H-bonds. It has been found that the cations dramatically affect the coordination of the tetravanadate polyanion and cucurbituril.  相似文献   

19.
The synthesis and magnetic properties of 13 new homo- and heterometallic Co(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co(II)(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·2.8CH(3)OH·0.2H(2)O (1·2.8CH(3)OH·0.2H(2)O), {Na(2)[Co(II)(2)(aib)(2)(N(3))(4)(CH(3)OH)(4)]}(n) (2), [Co(II)(6)La(III)(aib)(6)(OH)(3)(NO(3))(2)(H(2)O)(4)(CH(3)CN)(2)]·0.5[La(NO(3))(6)]·0.75(ClO(4))·1.75(NO(3))·3.2CH(3)CN·5.9H(2)O (3·3.2CH(3)CN·5.9H(2)O), [Co(II)(6)Pr(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Pr(NO(3))(5)]·0.41[Pr(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.59[Co(NO(3))(3)(H(2)O)]·0.2(ClO(4))·0.25H(2)O (4·0.25H(2)O), [Co(II)(6)Nd(III)(aib)(6)(OH)(3)(NO(3))(2.8)(CH(3)OH)(4.7)(H(2)O)(1.5)]·2.7(ClO(4))·0.5(NO(3))·2.26CH(3)OH·0.24H(2)O (5·2.26CH(3)OH·0.24H(2)O), [Co(II)(6)Sm(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Sm(NO(3))(5)]·0.44[Sm(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.56[Co(NO(3))(3)(H(2)O)]·0.22(ClO(4))·0.3H(2)O (6·0.3H(2)O), [Co(II)(6)Eu(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)OH)(4.87)(H(2)O)(1.13)](ClO(4))(2.5)(NO(3))(0.5)·2.43CH(3)OH·0.92H(2)O (7·2.43CH(3)OH·0.92H(2)O), [Co(II)(6)Gd(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.9)(H(2)O)(1.2)]·2.6(ClO(4))·0.5(NO(3))·2.58CH(3)OH·0.47H(2)O (8·2.58CH(3)OH·0.47H(2)O), [Co(II)(6)Tb(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Tb(NO(3))(5)]·0.034[Tb(NO(3))(3)(ClO(4))(0.5)(H(2)O)(0.5)]·0.656[Co(NO(3))(3)(H(2)O)]·0.343(ClO(4))·0.3H(2)O (9·0.3H(2)O), [Co(II)(6)Dy(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.92)(H(2)O)(1.18)](ClO(4))(2.6)(NO(3))(0.5)·2.5CH(3)OH·0.5H(2)O (10·2.5CH(3)OH·0.5H(2)O), [Co(II)(6)Ho(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·0.27[Ho(NO(3))(3)(ClO(4))(0.35)(H(2)O)(0.15)]·0.656[Co(NO(3))(3)(H(2)O)]·0.171(ClO(4)) (11), [Co(II)(6)Er(III)(aib)(6)(OH)(4)(NO(3))(2)(CH(3)CN)(2.5)(H(2)O)(3.5)](ClO(4))(3)·CH(3)CN·0.75H(2)O (12·CH(3)CN·0.75H(2)O), and [Co(II)(6)Tm(III)(aib)(6)(OH)(3)(NO(3))(3)(H(2)O)(6)]·1.48(ClO(4))·1.52(NO(3))·3H(2)O (13·3H(2)O). Complex 1 describes a distorted tetrahedral metallic cluster, while complex 2 can be considered to be a 2-D coordination polymer. Complexes 3-13 can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co(II)(6)] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2-300 K range for complexes 1, 3, 5, 7, 8, 10, 12, and 13, revealing the possibility of single molecule magnetism behavior for complex 10.  相似文献   

20.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号