首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Photophysical properties of 5-aminoquinoline (5AQ) have been investigated in various non-polar and polar (protic and aprotic) solvents using steady state and time resolved fluorescence. In aprotic solvents, the spectral maxima depend on the polarity. However, in protic solvents both the fluorescence intensity as well decay time show decrease depending on the hydrogen bonding ability of the solvent. The results suggest that photochemistry 5AQ is quite sensitive towards the polarity as well as protic character of the solvent.  相似文献   

2.
The excited state lifetimes of uracil, thymine and 5-fluorouracil have been measured using femtosecond UV fluorescence upconversion in various protic and aprotic polar solvents. The fastest decays are observed in acetonitrile and the slowest in aqueous solution while those observed in alcohols are intermediate. No direct correlation with macroscopic solvent parameters such as polarity or viscosity is found, but hydrogen bonding is one key factor affecting the fluorescence decay. It is proposed that the solvent modulates the relative energy of two close-lying electronically excited states, the bright ππ* and the dark nπ* states. This relative energy gap controls the non-radiative relaxation of the ππ* state through a conical intersection close to the Franck–Condon region competing with the ultrafast internal conversion to the ground state. In addition, an inverse isotope effect is observed in D2O where the decays are faster than in H2O.  相似文献   

3.
The excited-state photophysics of formylperylene (FPe) have been investigated in a series of nonpolar, polar aprotic, and polar protic solvents. A variety of experimental and theoretical methods were employed including femtosecond transient absorption (fs-TA) spectroscopy with 130 fs temporal resolution. We report that the ultrafast intramolecular charge transfer from the perylene unit to the formyl (CHO) group can be facilitated drastically by hydrogen-bonding interactions between the carbonyl group oxygen of FPe and hydrogen-donating solvents in the electronically excited state. The excited-state absorption of FPe in methanol (MeOH) is close to the reported perylene radical cation produced by bimolecular quenching by an electron acceptor. This is a strong indication for a substantial charge transfer in the S(1) state in protic solvents. The larger increase of the dipole moment change in the protic solvents than that in aprotic ones strongly supports this observation. Relaxation mechanisms including vibrational cooling and solvation coupled to the charge-transfer state are also discussed.  相似文献   

4.
Neutral/zwitterionic form equilibrium, excited state wave functions, absorption and emission spectra of kynurenine (KN) in various solvents (water, methanol, ethanol, and dimethylsulfoxide) have been studied theoretically. The ground electronic state geometries have been optimized by density functional theory methods; the geometries of the first two singlets excited electronic states have been optimized using the CASSCF technique. The influence of the solvent was taken into account by the calculation of the solvation free energies using the Polarizable Continuum Model (PCM). The spectra of electronic absorption and fluorescence emission have been calculated by the CS‐INDO S‐CI and SDT‐CI methods [Momicchioli, Baraldi, and Bruni, Chem Phys, 1983, 82, 229]. The calculated data reproduce the experimental positions of maxima and the solvent‐induced shifts of the absorption and emission bands well. The energy gap between the two lowest excited states of KN increases from aprotic to protic solvents. This fact suggests that the “proximity effect” cannot be responsible for the ultrafast decay of KN fluorescence in protic solvents. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

5.
The effects of the protic and aprotic polar solvents on the emission spectrum of the naphthalene-triethyl-amine system in THF were studied under conditions of steady-state illumination. The fluorescence spectrum of the naphthalene-triethylamine system consists of two emission bands, the fluorescence band of naphthalene (band A, 329 nm) and the emission band of the exciplex(band B, 468 nm). The intensities of both the emission bands decrease with increasing the solvent polarity. The intensity of band B also decreases due to the hy-drogen-bonding interaction between triethylamine and protic solvent, while that of band A increases. It is thus suggested that the quenching of naphthalene fluorescence by triethylamine in THF occurs through the charge transfer and electron transfer reactions. The spectral changes upon the increase of solvent polarity can be explained by the dependences of the equilibrium constant between exciplex and ion-pair and the rate constant for the electron transfer reaction from triethyl.amine to the excited naphthalene on the rel.ative permittivity of solvent. It is shown that the formation of intermolecular hydrogen-bonding between triethylamine and protic solvent suppresses the quenching reaction by the decrease in free amine. Acetonitrile has only a polar effect and trichloroacetic acid only a hydrogen-bonding(or protonation) effect, while alcohols have both the effects. The effects of alcohols could be separated into the effects of solvent polarity and intermolecular hy-drogen-bonding interaction quantitatively.  相似文献   

6.
The branching ratio of the excited-state population at the conical intersection between the S(1) and S(0) energy surfaces (Φ(CI)) of a protonated Schiff base of all-trans retinal in protic and aprotic solvents was studied by multipulse ultrafast transient absorption spectroscopy. In particular, pump-dump-probe experiments allowed to isolate the S(1) reactive state and to measure the photoisomerization time constant with unprecedented precision. Starting from these results, we demonstrate that the polarity of the solvent is the key factor influencing the Φ(CI) and the photoisomerization yield.  相似文献   

7.
The electronic transitions occurring in 4-(N,N-dimethylamino)-3-hydroxyflavone (DMAF) and 2-furanyl-3-hydroxychromone (FHC) were investigated using the TDDFT method in aprotic and protic solvents. The solvent effect was incorporated into the calculations via the PCM formalism. The H-bonding between solute and protic solvent was taken into account by considering a molecular complex between these molecules. To examine the effect of the H-bond on the ESIPT reaction, the absorption and emission wavelengths as well as the energies of the different states that intervene during these electronic transitions were calculated in acetonitrile, ethanol and methanol. The calculated positions of the absorption and emission wavelengths in various solvents were in excellent agreement with the experimental spectra, validating our approach. We found that in DMAF, the hydrogen bonding with protic solvents makes the ESIPT reaction energetically unfavourable, which explains the absence of the ESIPT tautomer emission in protic solvents. In contrast, the excited tautomer state of FHC remains energetically favourable in both aprotic and protic solvents. Comparing our calculations with the previously reported time-resolved fluorescence data, the ESIPT reaction of DMAF in aprotic solvents is reversible because the emitting states are energetically close, whereas in FHC, ESIPT is irreversible because the tautomer state is below the corresponding normal state. Therefore, the ESIPT reaction in DMAF is controlled by the relative energies of the excited states (thermodynamic control), while in FHC the ESIPT is controlled probably by the energetic barrier (kinetic control).  相似文献   

8.
A dyad bearing azobenzene and spiropyran units was synthesized and its applications in indicating the polarity and protic or aprotic properties of a solvent were explored. The spiropyran-azobenzene derivative (SPAB) can be induced to different forms in different miscellaneous solvents accompanied with different color changes and spectral characteristics at the presence of organic base DBU. In a nonpolar or low-polar solvent, SPAB exists in thermostable spiropyran form with yellow color output. While in an aprotic polar solvent, the spiropyran part isomerized to merocyanine form giving a blue color. When SPAB is subjected to a protic solvent, the alkylation reaction occurs at the oxygen generating the alkylated-SPAB with red color. This solvent-dependent property can be used for discriminating solvent type.  相似文献   

9.
The photophysics of singlet excited 5-fluorocytosine (5FC) was studied in steady-state and time-resolved experiments and theoretically by quantum chemical calculations. Femtosecond transient absorption measurements show that replacement of the C5 hydrogen of cytosine by fluorine increases the excited-state lifetime by 2 orders of magnitude from 720 fs to 73 +/- 4 ps. Experimental evidence indicates that emission in both compounds originates from a single tautomeric form. The lifetime of 5FC is the same within experimental uncertainty in the solvents ethanol and dimethyl sulfoxide. The insensitivity of the S(1) lifetime to the protic nature of the solvent suggests that proton transfer is not the principal quenching mechanism for the excited state. Excited-state calculations were carried out for the amino-keto tautomer of 5FC, the dominant species in polar environments, in order to understand its longer excited-state lifetime. CASSCF and CAS-PT2 calculations of the excited states show that the minimum energy path connecting the minimum of the (1)pi,pi state with the conical intersection responsible for internal conversion has essentially the same energetics for cytosine and 5FC, suggesting that both bases decay nonradiatively by the same mechanism. The dramatic difference in lifetimes may be due to subtle changes along the decay coordinate. A possible reason may be differences in the intramolecular vibrational redistribution rate from the Franck-Condon active, in-plane modes to the out-of-plane modes that must be activated to reach the conical intersection region.  相似文献   

10.
A 4a,4b-dihydrophenanthrene-type cyclic photoisomer, the C isomer, is the major primary photoproduct of bianthrone in protic and aprotic polar solvents, and undergoes solvent-dependent secondary reactions, including the formation of dihydrohelianthrone in protic solvents. The C isomer was shown to be formed through the singlet excited state while the B isomer is formed via the triplet manifold.  相似文献   

11.
The nonradiative rate in 3-aminoquinoline is found to exhibit anomalous solvent dependence, being rather fast in nonpolar solvents and remarkably slower in more polar and especially, more protic ones. The cause of such behavior is investigated by studying the dependence of fluorescence spectral and temporal parameters on the solvent properties such as polarity and hydrogen bonding ability. Complementary quantum mechanical calculations have been performed and the picture that emerges from these studies is that of an excited state with a short radiative lifetime due to the flipping of the amino group. This state is selectively populated in nonpolar, nonhydrogen bonding solvents, but is destabilized with respect to the more polar intramolecular charge transfer (ICT) state in polar solvents and even more so in protic solvents and dimethylsulfoxide. The slower nonradiative rates in the ICT state is attributed to the more restricted motion of the amino group in this state. The role of hydrogen bonding of the amino group and the ring nitrogen in stabilization/destabilization of the ICT state and therefore on the nonradiative rate is also explored.  相似文献   

12.
The dynamics of the excited states of 1‐aminofluoren‐9‐one (1AF) and 1‐(N,N‐dimethylamino)‐fluoren‐9‐one (1DMAF) are investigated by using steady‐state absorption and fluorescence as well as subpicosecond time‐resolved absorption spectroscopic techniques. Following photoexcitation of 1AF, which exists in the intramolecular hydrogen‐bonded form in aprotic solvents, the excited‐state intramolecular proton‐transfer reaction is the only relaxation process observed in the excited singlet (S1) state. However, in protic solvents, the intramolecular hydrogen bond is disrupted in the excited state and an intermolecular hydrogen bond is formed with the solvent leading to reorganization of the hydrogen‐bond network structure of the solvent. The latter takes place in the timescale of the process of solvation dynamics. In the case of 1DMAF, the main relaxation pathway for the locally excited singlet, S1(LE), or S1(ICT) state is the configurational relaxation, via nearly barrierless twisting of the dimethylamino group to form the twisted intramolecular charge‐transfer, S1(TICT), state. A crossing between the excited‐state and ground‐state potential energy curves is responsible for the fast, radiationless deactivation and nonemissive character of the S1(TICT) state in polar solvents, both aprotic and protic. However, in viscous but strong hydrogen‐bond‐donating solvents, such as ethylene glycol and glycerol, crossing between the potential energy surfaces for the ground electronic state and the hydrogen‐bonded complex formed between the S1(TICT) state and the solvent is possibly avoided and the hydrogen‐bonded complex is weakly emissive.  相似文献   

13.
Absorption and emission spectroscopic studies of (dibenzoylmethanato)boron difluoride (1bf) in various polar and non-polar, protic and aprotic solvents are reported. The solvatochromic shifts of the spectral bands were examined in terms of solvent properties, including donor and acceptor numbers, followed by multilinear regression in which several solvent parameters were simultaneously analyzed. This π-conjugated positively charged system exhibits excellent solvatochromism. Variations in the electronic absorption spectral characteristics of 1bf were studied in solution in the presence of zinc perchlorate. Absorption spectral studies indicate stable complex formation between the zinc ion and 1bf in the ground state in aprotic dipolar benzonitrile rather than in protic polar solvent methanol. Zinc ion binding of 1bf was theoretically rationalized through frontier molecular orbital interaction.  相似文献   

14.
Absorption, fluorescence, and fluorescence excitation spectral studies of two planar, cationic phenazinium dyes, namely, phenosafranin (PSF) and safranin-T (ST), have been performed in protic and aprotic polar solvents. The studies reveal the formation of both J- and H-aggregates in concentrated solutions. The planarity of the phenazinium skeleton and the presence of a positive charge are attributed to be the driving force for this aggregation behavior. The aggregates are established to be dimers only. The positive inductive effect of the methyl substituents in safranin-T augments the aggregation process. The experiments reveal that for both dyes, the polar protic solvent favors the aggregation process more than the aprotic solvent.  相似文献   

15.
The natural product hypericin was tested in recent years as a biological photosensitizer with a potential for viral and cellular photodamage. We thus studied extensively its spectroscopy and membrane partitioning. Absorption, fluorescence excitation and emission spectra of the sodium salt (HyNa) were measured in 36 protic and aprotic, polar and apolar, solvents. Electronic transition bands as well as vibrational progressions were identified. Aggregation in some nonpolar solvents and protonation in organic acids were demonstrated. Modeling solvatochromism was done by Lippert equation, by the ET(30) parameter and by the Taft multiparameter approach. In all cases, separation into protic and aprotic solvents gave much better fits to the models. 13C chemical shift data could also be correlated with solvent polarity. They correlated best with Lippert's delta f polarity measure, but tended to fall into two distinct solvent groups--each along different lines--corresponding to protic and aprotic media, respectively. This interesting phenomenon suggests that in the case of the charged and slightly water soluble HyNa, two mechanisms of solvation are involved, each resulting in its own line equation. In aprotic media, dipole-dipole interaction is the predominant solvation mechanism. In protic solvents, the most effective means of solvation is likely to be hydrogen bonding. When intercalated into the liposomal phospholipid bilayer, HyNa is oriented at an angle to the interface, thus experiencing a gradient of solvent polarities: a highly polar environment (similar to methanol) for C-2/5, suggesting that they lie not far from the interface; a moderately polar environment (similar to that of n-propanol) for C-6a/14a, which are somewhat deeper within the bilayer; and a more lipophilic environment (akin to n-hexanol) for C-10/11. The fluorescence excitation peak in liposomes also correlates with an aprotic medium of relatively high polarity, as might be excepted from a molecule in a shallow position in the bilayer.  相似文献   

16.
Ab initio calculations have been performed to examine the photochemical behavior of 4-(dimethylamino)benzenzonitrile (DMABN). The conical intersection between S2 and S1 (S2/S1-CIX), where the internal conversion takes place after the main transition of S0-S2 at the equilibrium geometry in S0, is characterized by a dimethylamino-twisted quinoid structure where aromaticity of the benzene ring is lost. The optimized geometry of the charge transfer (CT) state in S1 has a feature similar to that of S2/S1-CIX but is not energetically stabilized so much. Consequently, electronically excited DMABN with CT character relaxes into the most stable locally excited (LE) state in S1 through a recrossing at S2/S1-CIX in gas phase or nonpolar solvent. In polar solvent, in contrast, the equilibration between LE and CT takes place in S1 so that the CT state is more stable because of electrostatic interaction. The excited states of DMABN derivatives have been also examined. On the basis of the present computational results, a new and simple guiding principle of the emission properties is proposed, where conventional twisted intramolecular CT (TICT) and planar intramolecular CT (PICT) models are properly incorporated.  相似文献   

17.
Spectral and photophysical investigations of 4′-(p-aminophenyl)-2,2′:6′,2′′-terpyridine (APT) have been performed in various solvents with different polarity and hydrogen-bonding ability.The emission spectra of APT are found to exhibit dual fluorescence in polar solvents, which attributes to the local excited and intramolecular charge transfer states, respectively. The two-state model is proven out for APT in polar solvent by the time-correlated single photon counting emission decay measurement. Interestingly, the linear relationships of different emission maxima and solvent polarity parameter are found for APT in protic and aprotic solvents, because of the hydrogen bond formation between APT and alcohols at the amino nitrogen N25. Furthermore, the effects of the complexation of the metal ion with tpy group of APT and the hydrogen bond formation between APT with methanol at the terpyridinenitrogen N4—N8—N14 are also presented. The appearance of new long-wave absorption and fluorescence bands indicates that a new ground state of the complexes is formed.  相似文献   

18.
Spectroscopic studies of Methyl violet in protic (water, methanol, ethanol, isopropanol and n-butanol) and aprotic solvents (acetone, DMF) were carried out. UV-Visible absorption spectra of Methyl violet in protic solvents showed a hypsochromic shift, as the solvent polarity was changed from less polar to more polar, while a bathochromic shift was observed for aprotic solvents. Transition energy of Methyl violet in different solvents was correlated with solvatochromic parameters to study solute–solvents interactions. The Kamlet–Taft, Catalan and unified scale models were applied to investigate interactions between Methyl violet and solvents. The best agreement is found for the Catalan model.  相似文献   

19.
A trans-4-(p-N,N-dimethylaminostyryl)-N-vinylbenzylpyridinium chloride (vbDMASP) fluorescence probe was optimized in ground and excited state as a function of change in the microenvironment polarity, using the Amsol HyperChem program package. In the calculations, protic and aprotic solvents were used. On this basis a change in the molecule geometry after excitation, depending on the surrounding solvent, was determined. Absorption and steady-state fluorescence spectra of vbDMASP in the solvent of different polarity and in the model water-glycerol solutions were also recorded. On the basis of Stokes' shift change with the Onsager polarity scale a change in the dipole moment of the probe during transition from ground to excited state, in protic and aprotic solvents was determined. Since during the sol-gel transition of tetraethylorthosilane in the acidic environment both polarity and viscosity of the microenvironment change the vbDMASP probe was applied and fluorescence time-resolved measurements were done. On this basis the correlations between the results of time-resolved measurements for the multichromophoric probe applied in the gelation process and molecular optimization data are discussed.  相似文献   

20.
Photophysical Properties of the Cationic Form of Neutral Red   总被引:1,自引:0,他引:1  
Abstract— Photophysical properties of the cationic form of neutral red (NRH+), a phenazine-based dye of biological importance, have been investigated in several protic and aprotic solvents using optical absorption, steady-state and time-resolved fluorescence and picosecond laser flash photolysis techniques. Absorption and fluorescence characteristics of the dye in protic solvents indicate the existence of intermolecular hydrogen bonding between the NRH+ and solvent molecules in the ground state as well as in the excited state. Measurements of the fluorescence lifetime in normal and heavy water also support the formation of intermolecular hydrogen bonding. Time-resolved transient absorption spectra obtained in the picosecond laser flash photolysis experiments show only the absorption band due to the Sn← S1 absorption. The picosecond transient absorption results do not indicate any spectral shifts attributable to the hydrogen bond formation dynamics between the excited NRH+ and the protic solvent molecules. It is inferred that the hydrogen bonding dynamics are much faster than the time resolution of our picosecond setup (∼35 ps).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号