首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We introduce a simple and effective method to tailor the wetting and adhesion properties of thiolene-based microfluidic devices. This one-step lithographic scheme combines most of the advantages offered by the current methods employed to pattern microchannels: (i) the channel walls can be modified in situ or ex situ, (ii) their wettability can be varied in a continuous manner, (iii) heterogeneous patterning can be easily accomplished, with contact-angle contrasts extending from 0 to 90° for pure water, (iv) the surface modification has proven to be highly stable upon aging and heating. We first characterize the wetting properties of the modified surfaces. We then provide the details of two complementary methods to achieve surface patterning. Finally, we demonstrate the two methods with three examples of applications: the capillary guiding of fluids, the production of double emulsions, and the culture of cells on adhesive micropatterns.  相似文献   

2.
Design and evaluation of a Dean vortex-based micromixer   总被引:2,自引:0,他引:2  
A mixer, based on the Dean vortex, is fabricated and tested in an on-chip format. When fluid is directed around a curve under pressure driven flow, the high velocity streams in the center of the channel experience a greater centripetal force and so are deflected outward. This creates a pair of counter-rotating vortices moving fluid toward the inner wall at the top and bottom of the channel and toward the outer wall in the center. For the geometries studied, the vortices were first seen at Reynolds numbers between 1 and 10 and became stronger as the flow velocity is increased. Vortex formation was monitored in channels with depth/width ratios of 0.5, 1.0, and 2.0. The lowest aspect ratio strongly suppressed vortex formation. Increasing the aspect ratio above 1 appeared to provide improved mixing. This design has the advantages of easy fabrication and low surface area.  相似文献   

3.
The smart surface created in a microfluidic chip has shown the capability of adsorbing and releasing proteins under electrical control. The inner surface of the chip channel was first coated by a thin layer of Au through sputtering and was subsequently modified with loosely packed self-assembled monolayers (SAMs) of thiols with terminal carboxylic or amino groups. Upon application of an external electric potential to the gold substrate, reversible conformational transformation between "bent" and "straight" states for the anchored mercapto chains could be modulated, through the electrostatic effect between the ionized terminal groups and the charged gold substrate. Thus, a hydrophobic or hydrophilic channel surface was established and could be reversibly switched electrochemically. Accordingly, the microchips prepared in this way can reversibly and selectively adsorb and release differently charged proteins under electrical control. Two model proteins, avidin and streptavidin, were demonstrated to be readily adsorbed by the smart chips under negative and positive potential, respectively. Also, more than 90 % of the adsorbed proteins could be released upon an electrical command. Furthermore, these chips were applied to the controlled separation of avidin and streptavidin mixtures with 1:1 and 1:1000 molar ratios. Under specific applied potentials, the chips adsorbed a certain protein from the mixture whereas the other protein was allowed to flow out, after which the adsorbed protein could be released by switching the applied potential. Thus, two eluted protein fractions were obtained and the separation of the two proteins was achieved. For the former mixture, each eluted fraction contained up to approximately 80-90 % avidin or streptavidin. For the latter mixture, the resulting separation efficiency indicated that the molar ratio of avidin and streptavidin could be increased from 1:1000 to about 32:1 after five run separations.  相似文献   

4.
Microfluidic systems provide a unique platform for investigation of fundamental reaction processes, which is critical to understanding how to control nanostructure synthesis on a production scale. We have examined the synthesis of cysteine-capped CdS quantum dot nanocrystals (CdS-Cys) between two interdiffusing reagent streams in a continuous-flow microfluidic reactor. Using spatially resolved photoluminescence imaging and spectroscopy of the microreactor, we have acquired kinetic and mechanistic data on the CdS-Cys nanoparticle nucleation and growth, and observed a binary shift in the particle emission spectrum from a higher (2.9 eV) to lower (2.5 eV) energy emission peak within the first second of residence time. Several reactor models have been tested against the spatially and spectrally resolved signals, which suggest that homogeneous reaction and particle nucleation are diffusion-limited and occur only at the boundary between the two laminar streams, while a slower activation process occurs on a longer (seconds) time scale. The results provide direct insight into the rapid processes that occur during crystallization in microfluidic mixing channels, and demonstrate the potential of using controlled microfluidic environments with spatially resolved monitoring to conduct fundamental studies of nanocrystal nucleation and growth.  相似文献   

5.
Yang Y  Kulangara K  Sia J  Wang L  Leong KW 《Lab on a chip》2011,11(9):1638-1646
Cells residing in a microenvironment interact with the extracellular matrix (ECM) and neighboring cells. The ECM built from biomacromolecules often includes nanotopography. Through the ECM, interstitial flows facilitate transport of nutrients and play an important role in tissue maintenance and pathobiology. To create a microenvironment that can incorporate both nanotopography and flow for studies of cell-matrix interactions, we fabricated microfluidic channels endowed with nanopatterns suitable for dynamic culture. Using polymer thin film technology, we developed a versatile stitching technique to generate a large area of nanopatterned surface and a simple microtransfer assembly technique to assemble polydimethylsiloxane-based microfluidics. The cellular study showed that both nanotopography and fluid shear stress played a significant role in adhesion, spreading, and migration of human mesenchymal stem cells. The orientation and deformation of cytoskeleton and nuclei were regulated through the interplay of these two cues. The nanostructured microfluidic platform provides a useful tool to promote the fundamental understanding of cell-matrix interactions and may be used to regulate the fate of stem cells.  相似文献   

6.
Metabolites can directly reflect and modulate cell responses and phenotypical changes by influencing energy balances, intercellular signals, and many other cellular functions throughout the lifespan of cells.Taking into account the heterogeneity of cells, single-cell metabolite analysis offers an insight into the functional process within one cell. Microfluidics as a powerful tool has attracted significant interest in the single-cell metabolite analysis field. The microfluidic platform is possib...  相似文献   

7.
Wen CY  Liang KP  Chen H  Fu LM 《Electrophoresis》2011,32(22):3268-3276
This paper presents a detailed numerical investigation of the novel active microfluidic mixer proposed by Wen et al. (Electrophoresis 2009, 30, 4179-4186). This mixer uses an electromagnet driven by DC or AC power to induce transient interactive flows between a water-based ferrofluid and DI water. Experimental results clearly demonstrate the mixing mechanism. In the presence of the electromagnet's magnetic field, the magnetic nanoparticles create a body force vector that acts on the mixed fluid. Numerical simulations show that this magnetic body force causes the ferrofluid to expand significantly and uniformly toward miscible water. The magnetic force also produces many extremely fine finger structures along the direction of local magnetic field lines at the interface in both upstream and downstream regions of the microchannel when the external steady magnetic strength (DC power actuation) exceeds 30 Oe (critical magnetic Peclet number Pe(m),cr = 2870). This study is the first to analyze these pronounced finger patterns numerically, and the results are in good agreement with the experimental visualization of Wen et al. (Electrophoresis 2009, 30, 4179-4186). The large interfacial area that accompanies these fine finger structures and the dominant diffusion effects occurring around the circumferential regions of fingers significantly enhance the mixing performance. The mixing ratio can be as high as 95% within 2.0 s. at a distance of 3.0 mm from the mixing channel inlet when the applied peak magnetic field supplied by the DC power source exceeds 60 Oe. This study also presents a sample implementation of AC power actuation in a numerical simulation, an experimental benchmark, and a simulation of DC power actuation with the same peak magnetic strength. The simulated flow structures of the AC power actuation agree well with the experimental visualization, and are similar to those produced by DC power. The AC and DC power actuated flow fields exhibited no significant differences. This numerical study suggests approaches to maximize the performance of the proposed rapid magnetic microfluidic mixer, and confirms its exciting potential for use in lab-on-a-chip systems.  相似文献   

8.
Lin CC  Tseng CC  Chuang TK  Lee DS  Lee GB 《The Analyst》2011,136(13):2669-2688
Microfluidics has attracted considerable attention since its early development in the 1980s and has experienced rapid growth in the past three decades due to advantages associated with miniaturization, integration and automation. Urine analysis is a common, fast and inexpensive clinical diagnostic tool in health care. In this article, we will be reviewing recent works starting from 2005 to the present for urine analysis using microfluidic devices or systems and to provide in-depth commentary about these techniques. Moreover, commercial strips that are often treated as chips and their readers for urine analysis will also be briefly discussed. We start with an introduction to the physiological significance of various components or measurement standards in urine analysis, followed by a brief introduction to enabling microfluidic technologies. Then, microfluidic devices or systems for sample pretreatments and for sensing urinary macromolecules, micromolecules, as well as multiplexed analysis are reviewed, in this sequence. Moreover, a microfluidic chip for urinary proteome profiling is also discussed, followed by a section discussing commercial products. Finally, the authors' perspectives on microfluidic-based urine analysis are provided. These advancements in microfluidic techniques for urine analysis may improve current routine clinical practices, particularly for point-of-care (POC) applications.  相似文献   

9.
A novel microdevice which had a micro- and nanometer-scale patterned surface for cell adhesion in a microchip was developed. The surface had a metal pattern fabricated by electron-beam lithography and metal sputtering and a chemical pattern consisting of a self-assembled monolayer of alkanethiol. The metal patterned surface had a gold stripe pattern which was as small as 300 nm wide and 150 nm high and both topography and chemical properties could be controlled. Mouse fibroblast NIH/3T3 cells were cultured on the patterned surface and elongated along the gold stripes. These cells recognized the size of the pattern and the chemical properties on the pattern though it was much smaller than they were. There was satisfactory cell growth under fresh medium flow in the microchip. The combination of the patterned surface and the microchip provides cells with a novel environment for their growth and will facilitate many cellular experiments. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Electrostatic potentials computed on molecular surfaces are used to analyse some noncovalent interactions that are not in the category of hydrogen bonding, e.g. “halogen bonding”. The systems examined include halogenated methanes, substituted benzenes,s-tetrazine and l,3-bisphenylurea. The data were obtained byab initio SCF calculations.  相似文献   

11.
12.
Ahola S  Telkki VV  Stapf S 《Lab on a chip》2012,12(10):1823-1830
Velocity distributions (so-called propagators) with two-dimensional spatial resolution inside a chemical micromixer were measured by pulsed-field-gradient spin-echo (PGSE) nuclear magnetic resonance (NMR). A surface coil matching the volume of interest was built to enhance the signal-to-noise ratio. This enabled the acquisition of velocity maps with a very high spatial resolution of 29 μm × 39 μm. The measured propagators are compared with theoretical distributions and a good agreement is found. The results show that the propagator data provide much richer information about flow behaviour than conventional NMR velocity imaging and the information is essential for understanding the performance of a micromixer. It reveals, for example, deviations in the shape and size of the channel structures and multicomponent flow velocity distribution of overlapping channels. Propagator data efficiently compensate lost information caused by insufficient 3D resolution in conventional velocity imaging.  相似文献   

13.
AC electroosmotic micromixer for chemical processing in a microchannel   总被引:1,自引:0,他引:1  
A rapid micromixer of fluids in a microchannel is presented. The mixer uses AC electroosmotic flow, which is induced by applying an AC voltage to a pair of coplanar meandering electrodes configured in parallel to the channel. To demonstrate performance of the mixer, dilution experiments were conducted using a dye solution in a channel of 120 microm width. Rapid mixing was observed for flow velocity up to 12 mm s(-1). The mixing time was 0.18 s, which was 20-fold faster than that of diffusional mixing without an additional mixing mechanism. Compared with the performance of reported micromixers, the present mixer worked with a shorter mixing length, particularly at low Peclet numbers (Pe < 2 x 10(3)).  相似文献   

14.
Shiddiky MJ  Won MS  Shim YB 《Electrophoresis》2006,27(22):4545-4554
A CE microsystem coupled with a microchip and a copper-(3-mercaptopropyl) trimethoxysilane (Cu-MPS) complex-modified carbon paste electrode (CPE) was developed for the simultaneous analysis of nitrite and nitrate. The method is based on the electrocatalytic reduction of both analytes with the modified electrode. The Cu-MPS complex was characterized by voltammetric, XPS, and FT-IR analyses. Experimental parameters affecting the sensitivity of the modified electrode were assessed and optimized. The best separation was achieved in a 60 mm separation channel filled with a 20 mM acetate buffer of pH 5.0 containing 3.0 mM CTAB at separation field strength of -250 V/cm within 90 s. The detection potential for the simultaneous analysis of nitrite and nitrate was found to be -225 mV versus Ag/AgCl. A reproducible response (RSD of 3.2% (nitrite) and 2.8% (nitrate), n = 8) for repetitive sample injections reflected the negligible electrode fouling at the modified CPE. The interference effect was examined for other inorganic ions and biological compounds. A wide hydrodynamic range between 0.25 and 120 microM was observed for analyzing nitrite and nitrate with the sensitivities of 0.069 +/- 0.003 and 0.065 +/- 0.002 nA/microM, and the detection limits, based on S/N = 3, were found to be 0.09 +/- 0.007 and 0.08 +/- 0.009 microM, respectively. The applicability of the method to water and urine samples analyses was demonstrated.  相似文献   

15.
16.
17.
Here we have demonstrated that radio frequency plasma and ultraviolet-ozone (UVO) surface modifications are effective treatments for enabling the thermal bonding of polymeric microfluidic chips at temperatures below the T(g) (glass transition temperature) of the polymer. The effects of UVO and plasma treatments on the surface properties of a cyclic polyolefin and polystyrene were examined with X-ray photoelectron spectroscopy (XPS), contact angle measurements, atomic force microscopy (AFM) surface roughness measurements and surface adhesion measurements with AFM force-distance data. Three-point bending tests using a dynamic mechanical analyzer (DMA) were used to characterize the bond strength of thermally sealed polymer parts and the cross-sections of the bonded microchannels were evaluated with scanning electron microscopy (SEM). The experimental results demonstrated that plasma and UVO surface treatments cause changes in the chemical and physical characteristics of the polymer surfaces, resulting in a decrease in T(g) at the surface, and thus allowing the microfluidic chips to be effectively bonded at temperatures lower than the T(g) of the bulk polymer without losing the intended channel geometry.  相似文献   

18.
Hu Z  Glidle A  Ironside CN  Sorel M  Strain MJ  Cooper J  Yin H 《Lab on a chip》2012,12(16):2850-2857
We have demonstrated a monolithic integrated arrayed waveguide grating (AWG) microspectrometer microfluidic platform capable of fluorescence spectroscopic analysis. The microspectrometer in this proof of concept study has a small (1 cm × 1 cm) footprint and 8 output channels centred on different wavelengths. We show that the signals from the output channels detected on a camera chip can be used to recreate the complete fluorescence spectrum of an analyte. By making fluorescence measurements of (i) mixed quantum dot solutions, (ii) an organic fluorophore (Cy5) and (iii) the propidium iodide (PI)-DNA assay, we illustrate the unique advantages of the AWG platform for simultaneous, quantitative multiplex detection and its capability to detect small spectroscopic shifts. Although the current system is designed for fluorescence spectroscopic analysis, in principle, it can be implemented for other types of analysis, such as Raman spectroscopy. Fabricated using established semiconductor industry methods, this miniaturised platform holds great potential to create a handheld, low cost biosensor with versatile detection capability.  相似文献   

19.
A surface plasmon resonance (SPR) sensor on a compact disk (CD)-type microfluidic device was developed to miniaturize the elements of a complete analytical system, pump and valves. The CD-type microfluidic device was fabricated by attaching a polydimethylsiloxane disk plate that contained microchannels and reservoirs to a flat polycarbonate disk plate that contained grating films with a thin layer of Au. The optical system of the SPR sensor and the theory for its operation are based on the principle of a grating coupled-type SPR. The sample and reagent solutions in the reservoirs on the CD-type microfluidic device were sequentially introduced into the detection chamber by centrifugal force generated by the rotation of the microfluidic device. The variation of resonance wavelength was dependent on the refractive index of the sample solution. This CD-type SPR sensor was successfully used in an immunoassay of immunoglobulin A (IgA). The anti-IgA, blocking reagent, sample and washing solution in the reservoirs were sequentially introduced into the detection chamber by changing the frequency of rotation of the microfluidic device. IgA in the sample solution was adsorbed to the anti-IgA immobilized on the Au thin layer in the detection chamber and was then detected by the SPR sensor.  相似文献   

20.
Kumar R  Vellanki SH  Smith R  Wieder R 《Lab on a chip》2012,12(9):1646-1655
We describe a method to detect the expression of a surface protein in single cells without prior labeling or manipulation using a microfluidic device. When the protein is expressed on a cell surface, it undergoes transient bond formation with an immobilized ligand as the cell is pumped through a microfluidic channel, resulting in a specific decrease in the cell's velocity. We were able to detect the expression of interleukin 13 receptor alpha 2 (IL13Rα2) differentially expressed on LM2 cells, a subline of MDA-MB-231 human breast cancer cells with a unique lung metastatic capability. The detection of cells with high expression of the protein was near 100% sensitive and 100% specific. We also provided proof of principle of multiplexing by tracking the same cell over two, differentially-coated patches. The method is non-destructive and cells can be collected for reanalysis. The system can identify positive cells in a cell mixture. This method will have a potential impact in analyzing cancer cells when only a few are available, such as the case with needle aspirates and when labeling and manipulation result in cell loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号