首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chiral tungsten(IV) aqua-oxo-alkyne complexes, [Tp'W(O)(H2O)(RC identical to CR)][OTf] (R = H (1); R = Me (2)); (Tp' = hydridotris(3,5-dimethylpyrazolyl)borate; OTf = trifluoromethanesulfonate), have been prepared by halide abstraction from iodide precursors. These cationic complexes have been characterized with triflate as the counteranion. The tautomeric dihydroxo isomer has not been observed. The neutral triflate adduct Tp'W(O)(OTf)(HC identical to CH) (3) has also been isolated. Cationic complexes 1 and 2 undergo deprotonation and isomerization when exposed to Al2O3 to give the dioxo-vinyl compounds Tp'W(O)2(CH=CH2) (6) and Tp'W(O)2[C(Me)=C(H)(Me)] (7), reflecting the conversion of the WIV(OH)(RC identical to CR) fragment to WVI(=O)(RC=CHR). The presumed intermediates, neutral oxo-hydroxo compounds Tp'W(O)(OH)(RC identical to CR) (R = H (9); R = Me (10)), can be accessed by deprotonation of 1 or 2 with NaOH. Conversion of 9 to 6 was achieved thermally upon heating at 100 degrees C for 2 days. X-ray structural data have provided solid-state structures of both the cationic aqua complex 2 and the dioxo-vinyl complex 6.  相似文献   

2.
Dialkylamino substituted cyclic carbaphosphazenes, (R 2 NCN) 2 (NPCl 2 ) were prepared and reacted with the ferrocene derived hydroxymethyl phosphine sulfide FcCH(CH 3 )P(S)(CH 2 OH) 2 after dilithiation to yield a series of new spirocyclic derivatives of cyclic carbaphosphazenes having ferrocenyl pendant groups. To confirm the formation of six membered spirocycles and to compare their spectral features, transesterification reactions of FcCH(CH 3 )P(S)(CH 2 OH) 2 also were carried out with P(NR 2 ) 3 , yielding the six membered heterocycles FcCH 2 P(S)(CH 2 O) 2 PNR 2 (R = Me, Et). The compounds were characterized by 1 H, 31 P, 13 C NMR, mass spectra, and elemental analysis.  相似文献   

3.
The previously unknown heteropolyoxometalates [gamma-SiO(4)W(10)O(32)(OH)Cr(2)(OOCR)(2)(OH(2))(2)](5-) (R = H, CH(3)) have been prepared by the reaction of [gamma-SiO(4)W(10)O(32)](8-) with [Cr(OH(2))(6)](3+) in formate or acetate buffer solution. Isolation of these new Cr(III)-substituted polyoxometalates was accomplished both as Cs(+) salts and as the Bu(4)N(+) salt for the acetate-containing anion. The compounds were characterized by elemental analysis, UV/vis, IR, and ESR spectroscopy, and cyclic voltammetry. The single-crystal X-ray structural analysis of (Bu(4)N)(3)H(2)[gamma-SiO(4)W(10)O(32)(OH)Cr(2)(OOCCH(3))(2)(OH(2))(2)].3H(2)O [P2(1)2(1)2(1); a = 17.608(12), b = 20.992(13), c = 24.464(11) ?; Z = 4; R = 0.057 for 6549 observed independent reflections] reveals that the two corner-linked CrO(6) octahedra are additionally bridged by two acetate groups, demonstrating the relationship to the well-studied oxo-centered trinuclear carboxylato complexes of Cr(III).  相似文献   

4.
Mixed-ligand diorganotin esters, [R 2Sn(OP(O)(OH)Ph)(OS(O) 2R (1))] n [R = n-Bu, R (1) = Me ( 1), n-Pr ( 2); R = Et, R (1) = Me ( 3)], have been synthesized by reacting the tin precursors, R 2Sn(OR (1))OS(O) 2R with an equimolar amount of phenylphosphonic acid under mild conditions (room temperature, 6-8 h, CH 2Cl 2). These have been characterized by IR, multinuclear ( (1)H, (13)C{ (1)H}, (31)P, and (119)Sn) NMR, and single crystal X-ray diffraction studies. The asymmetric unit of 1 is comprised of a tetramer with four crystallographically unique tin atoms. The structure reveals a central eight-membered (Sn-O-S-O) 2 cyclic ring with two exocyclic tin atoms, which results from micro 3-binding of the two methanesulfonate groups. The remaining two sulfonates are monodentate and contribute in O...HO(P) hydrogen bonding. The molecular structure is extended into a 3D coordination polymer with the aid of hydrogenphenylphosphonate group on each tin atom, acting in a micro 2-O 2P mode and forms a series of eight-membered (Sn-O-P-O) 2 rings in the structural framework. 2 and 3 are isostructural and represent linear 1D coordination polymers via micro 2-binding mode of both alkanesulfonate and hydrogenphenylphosphonate groups.  相似文献   

5.
[(Ru(eta(6)-p-cymene)(mu-Cl)Cl)(2)] and [(Ru(eta(3):eta(3)-C(10)H(16))(mu-Cl)Cl)(2)] react with Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2) (R = Et (1a), Ph (1b)) affording complexes [Ru(eta(6)-p-cymene)Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (2a), Ph (2b)) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et (6a), Ph (6b)). While treatment of 2a with 1 equiv of AgSbF(6) yields a mixture of [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (3a) and [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,N-Ph(2)PCH(2)P[=NP(=O)(OEt)(2)]Ph(2))][SbF(6)] (4a), [Ru(eta(6)-p-cymene)Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OPh)(2)]Ph(2))][SbF(6)] (3b) and [Ru(eta(3):eta(3)-C(10)H(16))Cl(kappa(2)-P,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)] (R = Et (7a), Ph (7b)) are selectively formed from 2b and 6a,b. Complexes [Ru(eta(6)-p-cymene)(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (5a), Ph (5b)) and [Ru(eta(3):eta(3)-C(10)H(16))(kappa(3)-P,N,O-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))][SbF(6)](2) (R = Et (8a), Ph (8b)) have been prepared using 2 equiv of AgSbF(6). The reactivity of 3-5a,b has been explored allowing the synthesis of [Ru(eta(6)-p-cymene)X(2)(kappa(1)-P-Ph(2)PCH(2)P[=NP(=O)(OR)(2)]Ph(2))] (R = Et, Ph; X = Br, I, N(3), NCO (9-12a,b)). The catalytic activity of 2-8a,b in transfer hydrogenation of cyclohexanone, as well as theoretical calculations on the models [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,N-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+ and [Ru(eta(6)-C(6)H(6))Cl(kappa(2)-P,O-H(2)PCH(2)P[=NP(=O)(OH)(2)]H(2))]+, has been also studied.  相似文献   

6.
Phosphorus functionalized trimeric alanine compounds (l)- and (d)-P(CH(2)NHCH(CH(3))COOH)(3) 2 are prepared in 90% yields by the Mannich reaction of Tris(hydroxymethyl)phosphine 1 with (l)- or (d)- Alanine in aqueous media. The hydration properties of (l)-2 and (d)-2 in water and water-methanol mixtures are described. The crystal structure analysis of (l)-2.4H(2)O, reveals that the alanine molecules pack to form two-dimensional bilayers running parallel to (001). The layered structural motif depicts two closely packed monolayers of 2 each oriented with its phosphorus atoms projected at the center of the bilayer and adjacent monolayers are held together by hydrogen bonds between amine and carboxylate groups. The water bilayers are juxtaposed with the H-bonded alanine trimers leading to 18-membered (H(2)O)(18) water rings. Exposure of aqueous solution of (l)-2 and (d)-2 to methanol vapors resulted in closely packed (l)-2 and (d)-2 solvated with mixed water-methanol (H(2)O)(15)(CH(3)OH)(3) clusters. The O-O distances in the mixed methanol-water clusters of (l)-2.3H(2)O.CH(3)OH and (d)-2.3H(2)O.CH(3)OH (O-O(average) = 2.857 A) are nearly identical to the O-O distance observed in the supramolecular (H(2)O)(18) water structure (O-O(average) = 2.859 A) implying the retention of the hydrogen bonded structure in water despite the accommodation of hydrophobic methanol groups within the supramolecular (H(2)O)(15)(CH(3)OH)(3) framework. The O-O distances in (l)-2.3H(2)O.CH(3)OH and (d)-2.3H(2)O.CH(3)OH and in (H(2)O)(18) are very close to the O-O distance reported for liquid water (2.85 A).  相似文献   

7.
A variety of phosphorus(V) octaethylporphyrin derivatives of the type [P(OEP)(X)(Y)](+)Z(-) (OEP: octaethylporphyrin) (X = CH(3), CH(2)CH(3), C(6)H(5), F; Y = CH(3), CH(2)CH(3), OH, OCH(3), OCH(2)CH(3), On-Pr, Oi-Pr, Osec-Bu, NHBu, NEt(2), Cl, F, O(-); Z = ClO(4), PF(6)) were prepared. X-ray crystallographic analysis of eleven compounds reveals that the degree of ruffling of the porphyrin core becomes greater and the average P-N bond distance becomes shorter as the axial ligands become more electronegative. Therefore, the electronic effect of the axial substituents plays a major role in determining the degree of ruffling although the steric effect of the substituents plays some role. A comparison of the (1)H NMR chemical shifts for the series of [P(OEP)(CH(2)CH(3))(Y)](+)Z(-) complexes with those of the corresponding arsenic porphyrins, which possess a planar core, indicates a much smaller ring current effect of the porphyrin core in the severely ruffled phosphorus porphyrins. The electrochemistry, spectroelectrochemistry and ESR spectroscopy of the singly reduced compounds are also discussed. The OH protons of [P(OEP)(X)(OH)](+) are acidic enough to generate P(OEP)(X)(O) by treatment with aq dilute NaOH. X-ray analysis of P(OEP)(CH(2)CH(3))(O) reveals that the PO bond length is very short (1.475(7) A) and is comparable to that in triphenylphosphine oxide (1.483 A). The features of the quite unique hexacoordinate hypervalent compounds are investigated by density functional calculation of a model (Por)P(CH(2)CH(3))(O) and (Por)P(F)(O) (Por: unsubstituted porphyrin).  相似文献   

8.
A variety of inter- and intramolecular dehydration was found in the reactions of [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)(mu-S(2))](CF(3)SO(3))(4) (1) with hydroxyl substituted alkenes and alkynes. Treatment of 1 with allyl alcohol gave a C(3)S(2) five-membered ring complex, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH(2)CH(2)CH(OCH(2)CH=CH(2))S]](CF(3)SO(3))(4) (2), via C-S bond formation after C-H bond activation and intermolecular dehydration. On the other hand, intramolecular dehydration was observed in the reaction of 1 with 3-buten-1-ol giving a C(4)S(2) six-membered ring complex, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2) [mu-SCH(2)CH=CHCH(2)S]](CF(3)SO(3))(4) (3). Complex 1 reacts with 2-propyn-1-ol or 2-butyn-1-ol to give homocoupling products, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCR=CHCH(OCH(2)C triple bond CR)S]](CF(3)SO(3))(4) (4: R = H, 5: R = CH(3)), via intermolecular dehydration. In the reaction with 2-propyn-1-ol, the intermediate complex having a hydroxyl group, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH=CHCH(OH)S]](CF(3)SO(3))(4) (6), was isolated, which further reacted with 2-propyn-1-ol and 2-butyn-1-ol to give 4 and a cross-coupling product, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH=CHCH(OCH(2)C triple bond CCH(3))S]](CF(3)SO(3))(4) (7), respectively. The reaction of 1 with diols, (HO)CHRC triple bond CCHR(OH), gave furyl complexes, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SSC=CROCR=CH]](CF(3)SO(3))(3) (8: R = H, 9: R = CH(3)) via intramolecular elimination of a H(2)O molecule and a H(+). Even though (HO)(H(3)C)(2)CC triple bond CC(CH(3))(2)(OH) does not have any propargylic C-H bond, it also reacts with 1 to give [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH(2)C(=CH(2))C(=C=C(CH(3))(2))]S](CF(3)SO(3))(4) (10). In addition, the reaction of 1 with (CH(3)O)(H(3)C)(2)CC triple bond CC(CH(3))(2)(OCH(3)) gives [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(2)][mu-S=C(C(CH(3))(2)OCH(3))C=CC(CH(3))CH(2)S][Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)]](CF(3)SO(3))(4) (11), in which one molecule of CH(3)OH is eliminated, and the S-S bond is cleaved.  相似文献   

9.
The synthesis and magnetic properties of 13 new homo- and heterometallic Co(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co(II)(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·2.8CH(3)OH·0.2H(2)O (1·2.8CH(3)OH·0.2H(2)O), {Na(2)[Co(II)(2)(aib)(2)(N(3))(4)(CH(3)OH)(4)]}(n) (2), [Co(II)(6)La(III)(aib)(6)(OH)(3)(NO(3))(2)(H(2)O)(4)(CH(3)CN)(2)]·0.5[La(NO(3))(6)]·0.75(ClO(4))·1.75(NO(3))·3.2CH(3)CN·5.9H(2)O (3·3.2CH(3)CN·5.9H(2)O), [Co(II)(6)Pr(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Pr(NO(3))(5)]·0.41[Pr(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.59[Co(NO(3))(3)(H(2)O)]·0.2(ClO(4))·0.25H(2)O (4·0.25H(2)O), [Co(II)(6)Nd(III)(aib)(6)(OH)(3)(NO(3))(2.8)(CH(3)OH)(4.7)(H(2)O)(1.5)]·2.7(ClO(4))·0.5(NO(3))·2.26CH(3)OH·0.24H(2)O (5·2.26CH(3)OH·0.24H(2)O), [Co(II)(6)Sm(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Sm(NO(3))(5)]·0.44[Sm(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.56[Co(NO(3))(3)(H(2)O)]·0.22(ClO(4))·0.3H(2)O (6·0.3H(2)O), [Co(II)(6)Eu(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)OH)(4.87)(H(2)O)(1.13)](ClO(4))(2.5)(NO(3))(0.5)·2.43CH(3)OH·0.92H(2)O (7·2.43CH(3)OH·0.92H(2)O), [Co(II)(6)Gd(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.9)(H(2)O)(1.2)]·2.6(ClO(4))·0.5(NO(3))·2.58CH(3)OH·0.47H(2)O (8·2.58CH(3)OH·0.47H(2)O), [Co(II)(6)Tb(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Tb(NO(3))(5)]·0.034[Tb(NO(3))(3)(ClO(4))(0.5)(H(2)O)(0.5)]·0.656[Co(NO(3))(3)(H(2)O)]·0.343(ClO(4))·0.3H(2)O (9·0.3H(2)O), [Co(II)(6)Dy(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.92)(H(2)O)(1.18)](ClO(4))(2.6)(NO(3))(0.5)·2.5CH(3)OH·0.5H(2)O (10·2.5CH(3)OH·0.5H(2)O), [Co(II)(6)Ho(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·0.27[Ho(NO(3))(3)(ClO(4))(0.35)(H(2)O)(0.15)]·0.656[Co(NO(3))(3)(H(2)O)]·0.171(ClO(4)) (11), [Co(II)(6)Er(III)(aib)(6)(OH)(4)(NO(3))(2)(CH(3)CN)(2.5)(H(2)O)(3.5)](ClO(4))(3)·CH(3)CN·0.75H(2)O (12·CH(3)CN·0.75H(2)O), and [Co(II)(6)Tm(III)(aib)(6)(OH)(3)(NO(3))(3)(H(2)O)(6)]·1.48(ClO(4))·1.52(NO(3))·3H(2)O (13·3H(2)O). Complex 1 describes a distorted tetrahedral metallic cluster, while complex 2 can be considered to be a 2-D coordination polymer. Complexes 3-13 can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co(II)(6)] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2-300 K range for complexes 1, 3, 5, 7, 8, 10, 12, and 13, revealing the possibility of single molecule magnetism behavior for complex 10.  相似文献   

10.
The photochemistry of various Roussin's red ester compounds of the general formula Fe(2)(SR)(2)(NO)(4), where R = CH(3), CH(2)CH(3), CH(2)C(6)H(5), CH(2)CH(2)OH, and CH(2)CH(2)SO(3)(-), were investigated. Continuous photolyses of these ester compounds in aerated solutions led to the release of NO with moderate quantum yields for the photodecomposition of the ester (Phi(RSE) = 0.02-0.13). Electrochemical studies using an NO electrode demonstrated that 4 mol of NO are generated for each mole of ester undergoing photodecomposition. Nanosecond flash photolysis studies of Fe(2)(SR)(2)(NO)(4) (where R = CH(2)CH(2)OH and CH(2)CH(2)SO(3)(-)) indicate that the initial photoreaction is the reversible dissociation of NO. In the absence of oxygen, the presumed intermediate, Fe(2)(SR)(2)(NO)(3), undergoes second-order reaction with NO to regenerate the parent cluster with a rate constant of k(NO) = 1.1 x 10(9) M(-1) s(-1) for R = CH(2)CH(2)OH. Under aerated conditions the intermediate reacts with oxygen to give permanent photochemistry.  相似文献   

11.
The coordination of Cd(2+) with P(CH(2)OH)(3) (THP) in methanol was followed by (31)P and (111)Cd NMR techniques. A cadmium-to-phosphine coordination ratio of 1:3 has been established, and effective kinetic parameters have been calculated. Air oxidation of THP in the presence of CdCl(2) at room temperature produces coordination polymer (3)(∞)[Cd(3)Cl(6)(OP(CH(2)OH)(3))(2)] (1). The same oxidation reaction at 70 °C gives another coordination polymer, (∞)[CdCl(2)(OP(CH(2)OH)(3))] (2). Complexes 1 and 2 are the first structurally characterized complexes featuring OP(CH(2)OH)(3) as a ligand that acts as a linker between Cd atoms. The addition of NaBPh(4) to the reaction mixture gives coordination polymer (∞)[Na(2)CdCl(2)(O(2)P(CH(2)OH)(2))(2)(H(2)O)(3)] (3) with (HOCH(2))(2)PO(2)(-) as the ligand. Coordination polymers 1-3 have been characterized by X-ray analysis, elemental analysis, and IR spectroscopy.  相似文献   

12.
Liaw BJ  Lobana TS  Lin YW  Wang JC  Liu CW 《Inorganic chemistry》2005,44(26):9921-9929
Reactions of [Cu(CH(3)CN)(4)]X (X = PF(6), BF(4)) with bis(diphenylphosphino)methane (dppm = Ph(2)PCH(2)PPh(2)) and ammonium dialkyldithiophosphates, (NH(4))[S(2)P(OR)(2)] (R = Et, (i)Pr), yield a series of novel Cu(I) polynuclear complexes, trinuclear [Cu(3)(mu-dppm)(3)(mu(3)-Cl){S(2)P(OEt)(2)}] (PF(6)) 1 and [Cu(3)(mu-dppm)(2){S(2)P(OR)(2)}(2)](PF(6)) (R = Et, 2; (i)Pr, 3), tetranuclear [Cu(4)(mu-dppm)(2) {S(2)P(OEt)(2)}(4)] 4, and hexanuclear [Cu(6)(mu-dppm)(2)(mu(4)-Cl){S(2)P(O(i)()Pr)(2)}(4)](BF(4)) 5. Similarly, the reaction of [Cu(2)(mu-L-L)(2)(CH(3)CN)(2)](PF(6))(2) (L-L, dppm, dppe = Ph(2)PCH(2)CH(2)PPh(2)) with (NH(4))[S(2)P(OR)(2)] yields dinuclear [Cu(2)(mu-dppm)(2){S(2)P(OR)(2)}(2)] 6 (R= (i)Pr, 6A; Et, 6B), trinuclear [Cu(3)(mu-dppe)(3)(mu-Cl)(2){S(2)P(O(i)Pr)(2)}] 9, and polymeric [Cu(mu(2)-dppe){S(2)P(OR)(2)}](n) (R = Et, 7; (i)Pr, 8) complexes. The formation of 1 and 5 involved the abstraction of chloride from dichloromethane when the Cu/S(2)P(OR)(2) ratio exceeded 1, but when ratio was 1:1, no Cl abstraction occurred, as in compound 4. Compound 9, however, was obtained as a 12% byproduct in the synthesis of 8 using a 1:1:1 ratio of Cu/dppe/S(2)P(O(i)Pr)(2). The chloride binds to Cu atoms in a mu(3)-Cl mode by capping one face of the Cu(3) triangle of cluster 1. A mu(4)-Cl caps a single tetragonal face of the trigonal prism of cluster 5, and in the cluster 9, two chlorides bond in mu(2)-Cl modes. Both clusters 2 and 3 exhibit the mu(3)-S mode of bonding for dtp ligands. Only cluster 5 exhibited close Cu...Cu contacts (2.997-3.0238 A). All of compounds were characterized by single-crystal X-ray diffraction and pertinent crystallographic data for 1, 5, and 9 are are follows: (1) C(79)H(76)ClCu(3)F(6)O(2)P(8)S(2), triclinic, P, a = 11.213(1) A, b = 14.142(1) A, c = 25.910(2) A, alpha = 95.328(2) degrees , beta = 99.594(2) degrees , gamma = 102.581(2) degrees , V = 3918.2(6) A(3), Z = 2; (5) C(74)H(100)BClCu(6)F(4)O(8)P(8)S(8), monoclinic, P2(1)/n, a = 25.198(4) A, b = 15.990(3) A, c = 25.421(4) A, beta = 106.027(3) degrees , V = 9845(3)A(3), Z = 4; (9) C(84)H(86)Cl(2)Cu(3)O(2)P(7)S(2), monoclinic, C2/c, with a = 24.965(3) A, b = 17.058(2) A, c = 20.253(2) A, beta = 95.351(4) degrees , V = 8587.4(17)A(3), Z = 4.  相似文献   

13.
Adducts of the ligand bis(1,2,4-triazol-1-yl)methane (tz(2)(CH(2))) of the form AgX:tz(2)(CH(2)):ER(3):MeCN (1:1:1:x) (X = NO(3), R = Ph, E = P, As, or Sb, x = 1 or 2; X = NO(2), ClO(4), O(3)SCF(3), E = P, R = Ph, x = 0, 1 or 2; X = NO(3), ClO(4), E = P, R = cy, x = 1; X = ClO(4), E = As, R = Ph, x = 2) and AgNO(3):tz(2)(CH(2)):P(o-tolyl)(3) (2:2:1) have been synthesized and characterized in the solid state and in solution by analyses, spectral (IR, far-IR, (1)H and (13)C NMR, ESI MS data) data, and conductivity measurements. In the one-dimensional polymers (characterized by X-ray studies) AgNO(3):tz(2)(CH(2)):PPh(3):CH(3)CN (1:1:1:1), AgClO(4):tz(2)(CH(2)):PPh(3):CH(3)CN (1:1:1:2), AgNO(3):tz(2)(CH(2)):AsPh(3): CH(3)CN (1:1:1:2), and AgNO(3):tz(2)(CH(2)):SbPh(3):CH(3)CN (1:1:1:2), the silver atom can be regarded as four-coordinate, the tz(2)(CH(2)) ligands behaving as bridging groups rather than chelates, with no pair of ligands being dominant, quasi-trans, in their interactions. The AgNO(3):tz(2)(CH(2)):P(o-tolyl)(3) (2:2:1) adduct is a two-dimensional polymer containing two independent silver atoms, one four-coordinated unsymmetrically by a pair of triazolyl rings, one P(o-tolyl)(3), and a unidentate nitrate and the second by a quasi-symmetrical O(2)NO chelate and a pair of equivalent triazolyl rings.  相似文献   

14.
Facile substitution reactions of the two water ligands in the hydrophilic tetradentate phosphine complex cis-[Fe{(HOCH2)P{CH2N(CH2P(CH2OH)2)CH2}2P(CH2OH)}(H2O)2](SO4) (abbreviated to [Fe(L1)(H2O)2](SO4), 1) take place upon addition of Cl-, NCS-, N3(-), CO3(2-) and CO to give [Fe(L1)X2] (2, X = Cl; 4, X = NCS; 5, X=N3), [Fe(L1)(kappa2-O(2)CO)], 6 and [Fe(L1)(CO)2](SO4), 7. The unsymmetrical mono-substituted intermediates [Fe(L1)(H2O)(CO)](SO(4)) and [Fe(L(1))(CO)(kappa(1)-OSO(3))] (8/9) have been identified spectroscopically en-route to 7. Treatment of 1 with acetic anhydride affords the acylated derivative [Fe{(AcOCH2)P{CH2N(CH2P(CH2OAc)2)CH2}2P(CH2OAc)}(kappa2-O(2)SO2)] (abbreviated to [Fe(L2)(kappa2-O(2)SO2)], 10), which has increased solubility over 1 in both organic solvents and water. Treatment of 1 with glycine does not lead to functionalisation of L1, but substitution of the aqua ligands occurs to form [Fe(L(1))(NH(2)CH(2)CO(2)-kappa(2)N,O)](HSO(4)), 11. Compound 10 reacts with chloride to form [Fe(L(2))Cl(2)] 12, and 12 reacts with CO in the presence of NaBPh4 to form [Fe(L2)Cl(CO)](BPh4) 13b. Both of the chlorides in 12 are substituted on reaction with NCS- and N3(-) to form [Fe(L2)(NCS)2] 14 and [Fe(L2)(N3)2] 15, respectively. Complexes 2.H2O, 4.2H2O, 5.0.812H2O, 6.1.7H2O, 7.H2O, 10.1.3CH3C(O)CH3, 12 and 15.0.5H2O have all been crystallographically characterised.  相似文献   

15.
A series of novel mixed ligand dinickel complexes of the type [Ni(II)(2)L(μ-L')](+), where L' is a tetrahedral oxo-alkoxo vanadate (L' = [O(2)V(V)(OR)(2)](-), R = H or alkyl) and L a macrocyclic N(6)S(2) supporting ligand, have been prepared, and their esterification reactivity has been studied. The orthovanadate complex [Ni(2)L(μ-O(2)V(OH)(2))](+) (2), prepared by reaction between [Ni(2)L(μ-Cl)]ClO(4) with Na(3)VO(4) and a phase transfer reagent in CH(3)CN, reacts smoothly with MeOH and EtOH forming the vanadate diesters [Ni(2)L(μ-O(2)V(OMe)(2))](+) (3) and [Ni(2)L(μ-O(2)V(OEt)(2))](+) (4). The dialkyl orthovanadate esters in 3 and 4 are readily transesterified with mono- and difunctional alcohols. Complex 3 can also be generated from 4 by transesterification with MeOH. Complexes 3 and 4 react with diols (ethylene glycol, propylene glycol and diethylene glycol) as well to afford the complexes [Ni(2)L(μ-O(2)V(OH)(OCH(2)CH(2)OH))](+) (5), [Ni(2)L(μ-O(2)V(OCH(2))(2)CH(2))](+) (6), and [Ni(2)L(μ-O(2)V(OCH(2)CH(2))(2)O)] (7). The crystal structures of the tetraphenylborate salts of complexes 3-7 reveal in each case four-coordinate O(2)V(V)(OR)(2)(-) groups bonded in a μ(1,3)-bridging mode to generate trinuclear complexes with a central N(3)Ni(μ-S)(2)(μ(1,3)-O(2)V(OR)(2))NiN(3) core. The stabilization of the four-coordinate V(V)O(2)(OR)(2)(-) moieties is a consequence of both the two-point coordinative fixation to and the steric protection of the bowl-shape binding pocket of the [Ni(2)L](2+) fragment. Cyclic voltammetry experiments reveal that the encapsulated vanadate esters are not reduced in a potential window of -2.0 to +2.5 V vs SCE. The spins of the nickel(II) (S(i) = 1 ions) in 3 are weakly ferromagnetically coupled (J = +23 cm(-1), (H = -2JS(1)S(2))) to produce an S = 2 ground state.  相似文献   

16.
The new tetra dentate dianionic H2PS (N,N'-dipyridoxyl (1,3-propylenediamine)) Schiff-base ligand and its octahedral Co(III) salen complex [Co(PS)(H2O)(CH3OH)]+CH3COO(-) were synthesized, where coordinating atoms of H2PS (N,N,O(-),O(-)) occupied equatorial positions with H2O and CH3OH as axial ligands. The nature of the H2PS and its complex were determined by elemental and spectrochemical (IR, UV-vis, 1H NMR and Mass) analysis. Also, the fully optimized geometries and vibrational frequencies of them together with the 1H NMR chemical shifts of H2PS have been calculated using density functional theory (B3LYP) method. Obtained structural parameters are in good agreement with the experimental data reported for similar compounds. The calculated and experimental results confirmed the suggested structures for the ligand and complex.  相似文献   

17.
A series of compounds (cat)[V6O6(OCH3)8(calix)(CH3OH)] was obtained under anaerobic conditions and solvothermal reaction of VOSO4 with p-tert-butylcalix[4]arene (calix) in methanol using different types of bases (Et4NOH, NH4OH, pyridine, Et3N). All compounds contain the same polyoxo(alkoxo)hexavanadate anion [V6O6(OCH3)8(calix)(CH3OH)]- (1) exhibiting a mixed valence {VIIIVIV5O19} core with the so-called Lindqvist structure coordinated to a calix[4]arene macrocycle and cocrystallizing with the conjugated acid of the base (cat = Et4N+, NH4(+), pyridinium, Et3NH+) involved in the synthesis process. The structures have been fully established from X-ray diffraction on single crystals and the mixed valence state has been confirmed by bond valence sum calculations. The magnetic behavior of all compounds are the same because of the polyalkoxohexavanadate anion [V6O6(OCH3)8(calix)(CH3OH)]- (1) and have been interpreted by DFT calculations. Thus the V(III)...V(IV) interactions are found to be weakly ferromagnetic (<5.5 cm(-1)) while the V(IV)...V(IV) are antiferromagnetic (-17.6; -67.6 cm(-1)). The set of the coupling exchange parameters allows a good agreement with the magnetic experimental data.  相似文献   

18.
Calculations employing density functional theory (Gaussian 98, B3LYP, LANL2DZ, 6-31G) have been undertaken to interrogate the factors influencing the metathesis reaction involving M-M, C-C, and M-C triple bonds for the model compounds M(2)(EH)(6), M(2)(EH)(6)(mu-C(2)H(2)), and [(HE)(3)M(tbd1;CH)](2), where M = Mo, W and E = O, S. Whereas in all cases the ethyne adducts are predicted to be enthalpically favored in the reactions between M(2)(EH)(6) compounds and ethyne, only when M = W and E = O is the alkylidyne product [(HO)(3)W(tbd1;CH)](2) predicted to be more stable than the alkyne adduct. For the reaction M(2)(EH)(6)(mu-C(2)H(2)) --> [(HE)(3)M(tbd1;CH)](2), the deltaG degrees values (kcal mol(-)(1)) are -6 (M = W, E = O), +5 (M = Mo, E = O), +18 (M = W, E = S), and +21 (M = Mo, E = S) and the free energies of activation are calculated to be deltaG() = +19 kcal mol(-)(1) (M = W, E = O) and +34 kcal mol(-)(1) (M = Mo, E = O), where the transition state involves an asymmetric bridged structure M(2)(OH)(4)(mu-OH)(2)(CH)(mu-CH) in which the C-C bond has broken; C.C = 1.89 and 1.98 A for W and Mo, respectively. These results are discussed in terms of the experimental observations of the reactions involving ethyne and the symmetrically substituted alkynes (RCCR, where R = Me, Et) with M(2)(O(t)()Bu)(6) and M(2)(O(t)()Bu)(2)(S(t)()Bu)(4) compounds, where M = Mo, W.  相似文献   

19.
The reactivity of (eta(3)-allyl)palladium chloro dimers [(1-R-eta(3)-C(3)H(4))PdCl](2) (R = H or Me) towards a sterically hindered diphosphazane ligand [EtN{P(OR)(2)}(2)] (R = C(6)H(3)(Pr(i))(2)-2,6), has been investigated under different reaction conditions. When the reaction is carried out using NH(4)PF(6) as the halide scavenger, the cationic complex [(1-R-eta(3)-C(3)H(4))Pd{EtN(P(OR)(2))(2)}]PF(6) (R = H or Me) is formed as the sole product. In the absence of NH(4)PF(6), the initially formed cationic complex, [(eta(3)-C(3)H(5))Pd{EtN(P(OR)(2))(2)}]Cl, is transformed into a mixture of chloro bridged complexes over a period of 4 days. The dinuclear complexes, [(eta(3)-C(3)H(5))Pd(2)(mu-Cl)(2){P(O)(OR)(2)}{P(OR)(2)(NHEt)}] and [Pd(mu-Cl){P(O)(OR)(2)}{P(OR)(2)(NHEt)}](2) are formed by P-N bond hydrolysis, whereas the octa-palladium complex [(eta(3)-C(3)H(5))(2-Cl-eta(3)-C(3)H(4))Pd(4)(mu-Cl)(4)(mu-EtN{P(OR)(2)}(2))](2), is formed as a result of nucleophilic substitution by a chloride ligand at the central carbon of an allyl fragment. The reaction of [EtN{P(OR)(2)}(2)] with [(eta(3)-C(3)H(5))PdCl](2) in the presence of K(2)CO(3) yields a stable dinuclear (eta(3)-allyl)palladium(I) diphosphazane complex, [(eta(3)-C(3)H(5))[mu-EtN{P(OR)(2)}(2)Pd(2)Cl] which contains a coordinatively unsaturated T-shaped palladium center. This complex exhibits high catalytic activity and high TON's in the catalytic hydrophenylation of norbornene.  相似文献   

20.
Metal-organics [((RO)(3)P)(m)CuO(2)CCF(3)] (R = CH(3): 11a, m = 1; 11b, m = 2; 11c, m = 3. R = CH(2)CH(3): 12a, m = 1; 12b, m = 2; 12c, m = 3. R = CH(2)CF(3): 13a, m = 1; 13b, m = 2; 13c, m = 3) are either accessible by the reaction of [((RO)(3)P)(m)CuCl] (R = CH(3): 5a, m = 1; 5b, m = 2; 5c, m = 3. R = CH(2)CH(3): 6a, m = 1; 6b, m = 2; 6c, m = 3) with [KO(2)CCF(3)] (7), or treatment of [Cu(2)O] (8) with HO(2)CCF(3) (9) and P(OR)(3) (2, R = CH(3); 3, R = CH(2)CH(3); 4, R = CH(2)CF(3)). (31)P{(1)H} NMR spectra [((CH(3)O)(3)P)(m)CuO(2)CCF(3)] (m = 1, 1.5, 2, 2.5, 3, 3.5, and 4) have been studied at 25 and -80 °C showing phosphite ligand exchange in solution. The molecular structures of 11a and 13a-13c in the solid state are reported. Complexes 11a and 13a are tetramers featuring μ-η(2)(1κO:2κO')- and μ(3)-η(2)(1κO:2κO':3κO')-(11a) or μ(3)-η(2)(1κO:2κO':3κO')-bonded O(2)CCF(3) ligands (13a) with the Cu(I) ions being part of CuPO(2) and CuPO(3) units (11a), while in 13a solely a CuPO(3) moiety is present. Skeletal isomerism of 11a vs. 13a is discussed. Compound 13b is dimeric ({CuP(2)O(2)}(2)) with pseudo-tetrahedral Cu environments and μ-η(2)(1κO:2κO')O(2)CCF(3) functionalities. In monomeric 13c the O(2)CCF(3) ligand is η(1)(κO)-bonded to a tetra-coordinated Cu(i) ion. The thermal solid state properties of 11, 12 and 13 were studied by Thermo Gravimetry (TG). These complexes decompose by phosphite elimination, decarboxylation and dealkylation. Hot-wall Chemical Vapour Deposition (CVD) experiments were carried out at 380 °C using 11c as precursor for the deposition of copper onto pieces of TiN-coated oxidized silicon substrates. Copper layers of high purity were obtained with grain sizes between 200-1200 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号