首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Reaction of the ditopic phosphanylarylthiol 1-P(Biph)-2-SHC(6)H(4) (BiphPSH, Biph = 1,1'-biphenyl-2,2'-diyl), prepared by lithiation-electrophilic substitution, with NiCl(2)·6H(2)O, Na(2)[PdCl(4)] and [PtI(2)(cod)] (cod = 1,5-cyclooctadiene) in a 2:1 ratio and in the presence of NEt(3) led to formation of exclusively cis isomers of the square-planar complexes cis-[M{(1-P(Biph)-2-S-C(6)H(4))-κ(2)S,P}(2)] ([M{(BiphPS)-κ(2)S,P}(2)]; M = Ni (1), Pd (2), Pt (3)). Density functional calculations support the assumption that this is probably due to intramolecular π-π interaction of the biphenyl groups, which results in enhanced stability of the cis isomers. Compound 1 is the first example of a structurally characterised mononuclear cis-bis(phosphanylthiolato)nickel(III) complex. Small amounts of the trinuclear complex [{PtI(1-P(Biph)-μ-2-S-C(6)H(4)-κ(2)S,P)}(3)] (4) are also formed besides the mononuclear platinum bis-chelate complex 3.  相似文献   

2.
The synthesis of the heterotopic P,SAs ligand, 1-Ph(2)AsSC(6)H(4)-2-PPh(2) (1) and its reaction with [PdCl(2)(cod)], [PtI(2)(cod)] (cod = 1,5-cyclooctadiene) and NiCl(2)·6H(2)O is reported. Cleavage of the As-S bond of 1 and coordination of the resulting phosphanylthiolato ligand (SC(6)H(4)-2-PPh(2))(-) (SC(6)H(4)-2-PPh(2) = P,S) was observed with formation of [M(P,S)(2)] (M = Ni, Pd, Pt). In the case of Pd and Pt, not only the mononuclear complexes [M(P,S)(2)] formed, but also the trimers of [MX(P,S)] ([MX{(μ-S-SC(6)H(4)-2-PPh(2))-κ(2)S,P}](3) [M = Pd, X = Cl (2) and M = Pt, X = I (4)]). Formation of 2 and 4 was preceded by the trinuclear isomeric intermediates [(cis-M{(μ-S-SC(6)H(4)-2-PPh(2))-κ(2)S,P}(2))-MX(2)-MX{(μ-S-SC(6)H(4)-2-PPh(2))-κ(2)S,P}] [M = Pd, X = Cl (3) and M = Pt, X = I (5)]. The crystal structures of 1-5 and a possible reaction mechanism that leads to 2 and 4 are presented.  相似文献   

3.
The syntheses of the complexes [PtCl(2)(NCR)L] [R = Me, Et; L = PPh(3); R = Et, L = Py, CO] and [PtCl{(κ(2)-P,C)P(OC(6)H(4))(OPh)(2)}(NCEt)] are described starting from the easily available [PtCl(2)(NCR)(2)]. The stability of the products under different experimental conditions is discussed as well as their use as precursors to dinuclear complexes [Pt(μ-Cl)ClL](2). The crystal and molecular structures of cis-[PtCl(2)(NCEt)(PPh(3))], [SP-4-2]-[PtCl{(κ(2)-P,C)P(OC(6)H(4))(OPh)(2)}(NCEt)] and trans-[Pt(μ-Cl){(κ(2)-P,C)P(OC(6)H(4))(OPh)(2)}](2) are reported.  相似文献   

4.
A systematic substitution of the terminal chlorides coordinated to the hexanuclear cluster [Re(6)S(8)Cl(6)](4-) has been conducted. The following complexes: [Re(6)S(8)(PEt(3))Cl(5)](3-) (1), cis- (cis-2) and trans-[Re(6)S(8)(PEt(3))(2)Cl(4)](2-) (trans-2), mer- (mer-3) and fac-[Re(6)S(8)(PEt(3))(3)Cl(3)](-) (fac-3), and cis- (cis-4) and trans-[Re(6)S(8)(PEt(3))(4)Cl(2)] (trans-4) were synthesized and fully characterized. Compared to the substitution of the halide ligands of the related [Re(6)S(8)Br(6)](4-) and [Re(6)Se(8)I(6)](3-) clusters, the chloride ligands are slower to substitute which allowed us to prepare the first monophosphine cluster (1). In addition, the synthesis of fac-3 was optimized by using cis-2 as the starting material, which led to a significant increase in the overall yield of this isomer. Notably, we observed evidence of phosphine isomerization taking place during the preparation of the facial isomer; this was unexpected based on the relatively inert nature of the Re-P bond. The structures of Bu(4)N(+) salts of trans-2, mer-3, and fac-3 were determined using X-ray crystallography. All compounds display luminescent behavior. A study of the photophysical properties of these complexes includes measurement of the excited state lifetimes (which ranged from 4.1-7.1 μs), the emission quantum yields, the rates of radiative and non-radiative decay, and the rate of quenching with O(2). Quenching studies verify the triplet state nature of the excited state.  相似文献   

5.
The (organo)gallium compounds GaCl{(SC6H4-2-PPh2)-kappa2S,P}2 (1), Ga{(SC6H4-2-PPh2)-kappa2S,P}{(SC6H4-2-PPh2)-kappaS}2 (2), GaMe2{(SC6H4-2-PPh2)-kappa2S,P} (3), GatBu2{(SC6H4-2-PPh2)-kappa2S,P} (4), GatBu{(SC6H4-2-PPh2)-kappa2S,P}{(SC6H4-2-PPh2)-kappaS} (5), [GaMe2{(mu2-SC6H4-2-AsPh2)-kappaS}]2 (6), and GatBu{(SC6H4-2-AsPh2)-kappa2S,As}{(SC6H4-2-AsPh2)-kappaS} (7) were obtained from the reaction of 2-EPh2C6H4SH (E = P (PSH), As (AsSH)) with GaCl3 (1, 2) or GaR3 (R = Me, tBu; 3-7) in different molar ratios and under different reaction conditions. Compound 2 was also obtained from Li(PS) and GaCl3 (3.5:1). While a monomeric structure with a chelating phosphinoarylthiolato ligand is observed in GaMe2{(SC6H4-2-PPh2)-kappa2S,P} (3), a dimeric arsinoarylthiolato-bridged complex [GaMe2{(mu2-SC6H4-2-AsPh2)-kappaS}]2 (6) is obtained with the corresponding AsS- ligand. B3LYP/6-31G(d) calculations show that although the dimer is thermodynamically favored for both ligands, the formation of 3 is due to the combination of higher stability of the chelate compared with the monodentate phosphorus ligand and a higher barrier for the ring opening of the PS- than of the AsS- chelate.  相似文献   

6.
In acidic aqueous solution, a cobalt(III) complex containing monodentate N(9)-bound adeninate (ade(-)), cis-[Co(ade-kappaN(9))Cl(en)(2)]Cl (cis-[1]Cl), underwent protonation to the adeninate moiety without geometrical isomerization or decomposition of the Co(III) coordination sphere, and complexes of cis-[CoCl(Hade)(en)(2)]Cl(2) (cis-[2]Cl(2)) and cis-[Co(H(2)ade)Cl(en)(2)]Cl(3) (cis-[3]Cl(3)) could be isolated. The pK(a) values of the Hade and H(2)ade(+) complexes are 6.03(1) and 2.53(12), respectively, at 20 degrees C in 0.1 M aqueous NaCl. The single-crystal X-ray analyses of cis-[2]Cl(2).0.5H(2)O and cis-[3]Cl(2)(BF(4)).H(2)O revealed that protonation took place first at the adeninate N(7) and then at the N(1) atoms to form adenine tautomer (7H-Hade-kappaN(9)) and cationic adeninium (1H,7H-H(2)ade(+)-kappaN(9)) complexes, respectively. On the other hand, addition of NaOH to an aqueous solution of cis-[1]Cl afforded a mixture of geometrical isomers of the hydroxo-adeninato complex, cis- and trans-[Co(ade-kappaN(9))(OH)(en)(2)](+). The trans-isomer of chloro-adeninato complex trans-[Co(ade-kappaN(9))Cl(en)(2)]BF(4) (trans-[1]BF(4)) was synthesized by a reaction of cis-[2](BF(4))(2) and sodium methoxide in methanol. This isomer in acidic aqueous solution was also stable toward isomerization, affording the corresponding adenine tautomer and adeninium complexes (pK(a) = 5.21(1) and 2.48(9), respectively, at 20 degrees C in 0.1 M aqueous NaCl). The protonated product of trans-[Co(7H-Hade-kappaN(9))Cl(en)(2)](BF(4))(2).H(2)O (trans-[2](BF(4))(2).H(2)O) could also be characterized by X-ray analysis. Furthermore, the hydrogen-bonding interactions of the adeninate/adenine tautomer complexes cis-[1]BF(4), cis-[2](BF(4))(2), and trans-[2](BF(4))(2) with 1-cyclohexyluracil in acetonitrile-d(3) were investigated by (1)H NMR spectroscopy. The crystal structure of trans-[Co(ade)(H(2)O)(en)(2)]HPO(4).3H(2)O, which was obtained by a reaction of trans-[Co(ade)(OH)(en)(2)]BF(4) and NaH(2)PO(4), was also determined.  相似文献   

7.
The metal-mediated coupling between coordinated EtCN in the platinum(II) and platinum(IV) complexes cis- and trans-[PtCl(2)(EtCN)(2)], trans-[PtCl(4)(EtCN)(2)], a mixture of cis/trans-[PtCl(4)(EtCN)(2)] or [Ph(3)PCH(2)Ph][PtCl(n)(EtCN)] (n = 3, 5), and dialkyl- and dibenzylhydroxylamines R(2)NOH (R = Me, Et, CH(2)Ph, CH(2)C(6)H(4)Cl-p) proceeds smoothly in CH(2)Cl(2) at 20-25 degrees C and the subsequent workup allowed the isolation of new imino species [PtCl(n){NH=C(Et)ONR(2)}(2)] (n = 2, R = Me, cis-1 and trans-1; Et, cis-2 and trans-2; CH(2)Ph, cis-3 and trans-3; CH(2)C(6)H(4)Cl-p, cis-4 and trans-4; n = 4, R = Me, trans-9; Et, trans-10; CH(2)Ph, trans-11; CH(2)C(6)H(4)Cl-p, trans-12) or [Ph(3)PCH(2)Ph][PtCl(n){NH=C(Et)ONR(2)}] (n = 3, R = Me, 5; Et, 6; CH(2)Ph, 7; CH(2)C(6)H(4)Cl-p, 8; n = 5, R = Me, 13; Et, 14; CH(2)Ph, 15; CH(2)C(6)H(4)Cl-p, 16) in excellent to good (95-80%) isolated yields. The reduction of the Pt(IV) complexes 9-16 with the ylide Ph(3)P=CHCO(2)Me allows the synthesis of Pt(II) species 1-8. The compounds 1-16 were characterized by elemental analyses (C, H, N), FAB-MS, IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR (the latter for the anionic type complexes 5-8 and 13-16) and by X-ray crystallography for the Pt(II) (cis-1, cis-2, and trans-4) and Pt(IV) (15) species. Kinetic studies of addition of R(2)NOH (R = CH(2)C(6)H(4)Cl-p) to complexes [Ph(3)PCH(2)Ph][Pt(II)Cl(3)(EtCN)] and [Ph(3)PCH(2)Ph][Pt(IV)Cl(5)(EtCN)] by the (1)H NMR technique revealed that both reactions are first order in (p-ClC(6)H(4)CH(2))(2)NOH and Pt(II) or Pt(IV) complex, the second-order rate constant k(2) being three orders of magnitude larger for the Pt(IV) complex. The reactions are intermolecular in nature as proved by the independence of k(2) on the concentrations of added EtC triple bond N and Cl(-). These data and the calculated values of Delta H++ and Delta S++ are consistent with the mechanism involving the rate-limiting nucleophilic attack of the oxygen of (p-ClC(6)H(4)CH(2))(2)NOH at the sp-carbon of the C triple bond N bond followed by a fast proton migration.  相似文献   

8.
The [2 + 3] cycloaddition reactions (which are greatly accelerated by microwave irradiation) of the di(azido)platinum(II) compounds cis-[Pt(N(3))(2)(PPh(3))(2)] (1) with cyanopyridines NCR (2) (R = 4-, 3-, and 2-NC(5)H(4)) give the corresponding bis(pyridyltetrazolato) complexes trans-[Pt(N(4)CR)(2)(PPh(3))(2)] (3) [R = 4-NC(5)H(4) (3a), 3-NC(5)H(4) (3b), and 2-NC(5)H(4) (3c)]. Compound 3c has been characterized as the N(1)N(2)-bonded isomer in the solid state by X-ray crystallography and represents the first bis(tetrazolato) complex of this kind. Complexes 3a and 3b have been used as metallaligands to generate heteronuclear coordination polymers in the presence of copper nitrate. A one-dimensional supramolecular architecture was obtained as the exclusive product, {trans-[Pt(2)(N(4)CR)(4)(PPh(3))(4)Cu](n)(NO(3))(2n).nH(2)O (4.nH(2)O) (R = 4-NC(5)H(4)), when 3a was employed, whereas with 3b the heteronuclear square complex trans-[Pt(N(4)CR)(2)(PPh(3))(2)Cu(NO(3))(2)(H(2)O)](2) (5) (R = 3-NC(5)H(4)), composed of Pt/Cu ions, was obtained. All the isolated complexes were characterized by IR, elemental, and (for 3b, 3c, 4, and 5) X-ray structural analyses. Complexes 3 were additionally characterized by (1)H, (13)C, and (31)P {(1)H} NMR spectroscopies.  相似文献   

9.
Reactions of [Pt(PEt(3))(3)] (1) with the silanes HSiPh(3), HSiPh(2)Me and HSi(OEt)(3) led to the products of oxidative addition, cis-[Pt(H)(SiPh(3))(PEt(3))(2)] (2), cis-[Pt(H)(SiPh(2)Me)(PEt(3))(2)] (3), cis-[Pt(H){Si(OEt)(3)}(PEt(3))(2)] (cis-4) and trans-[Pt(H){Si(OEt)(3)}(PEt(3))(2)] (trans-4). The complexes cis-4 and trans-4 can also be generated by hydrogenolysis of (EtO)(3)SiSi(OEt)(3) in the presence of 1. Furthermore, the silyl compounds cis-4 and trans-4 react with B(C(6)F(5))(3) and CH(3)CN by hydride abstraction to give the cationic silyl complex trans-[Pt{Si(OEt)(3)}(NCCH(3))(PEt(3))(2)][HB(C(6)F(5))(3)] (8). In addition, the reactivity of the complexes cis-4, trans-4 and 8 towards alkenes and CO was studied using NMR experiments.  相似文献   

10.
Diffusion of ammonia into CH(2)Cl(2) solutions of the dialkylcyanamide complexes cis- or trans-[PtCl(2)(RCN)(2)] (R = NMe(2), NEt(2), NC(5)H(10)) at 20-25 degrees C leads to metal-mediated cyanamide-ammonia coupling to furnish, depending on reaction time, one or another type of novel bisguanidine compound, i.e. the molecular cis- or trans-[PtCl(2){NH=C(NH(2))R}(2)] (cis- and trans-) and the cationic cis- or trans-[Pt(NH(3))(2){NH=C(NH(2))R}(2)](Cl)(2) (cis- and trans-) complexes. Compounds cis- or trans- were converted to cis- or trans-, accordingly, upon prolonged treatment with NH(3) in CH(2)Cl(2). The ammination of the relevant nitrile complexes cis- or trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) in CH(2)Cl(2) solutions affords only the cationic compounds cis- or trans-[Pt(NH(3))(2){NH=C(NH(2))R}(2)](Cl)(2) (cis- and trans-). The formulation of was supported by satisfactory C, H and N elemental analyses, agreeable ESI(+)-MS (or FAB(+)-MS), IR, (1)H and (13)C NMR spectroscopies. The structures of trans-, trans-, cis-, trans-, cis-, and cis- were determined by single-crystal X-ray diffraction disclosing structural features and showing that the ammination gives ligated guanidines and amidines in the E- and Z-forms, respectively, where both correspond to the trans-addition of NH(3) to the nitrile species.  相似文献   

11.
The reaction between K[PtCl(3)(Me(2)SO)] or prepared in this work cis- and trans-[PtCl(2)(NCNR(2))(Me(2)SO)] (R(2) = Me(2), 1; C(4)H(8)O, 2; C(5)H(10) 3) with an excess of NCNR(2) in water gives the cationic bischelate [Pt{κ(2)-N,N'-NH=C(NMe(2))OC(NMe(2))=NH}(2)](2+) (4(2+)) and the monochelates [PtCl{κ(2)-N,O-NH=C(NR(2))NC(NR(2))=O}(Me(2)SO)] (R(2) = C(4)H(8)O, 5; C(5)H(10), 6). Complex 4(2+) was released from the reaction mixture as 4·[PtCl(3)(Me(2)SO)](2)·(H(2)O)(2) or it was precipitated as 4·[A](2) (A = pic, 4·[pic](2); PF(6), 4·[PF(6)](2); BPh(4), 4·[BPh(4)](2)·(NH(2)CONMe(2))) by addition of picric acid, NaPF(6), or NaBPh(4), respectively, to the filtrate obtained after separation of 4·[PtCl(3)(Me(2)SO)](2)·(H(2)O)(2). In 2, the dialkylcyanamide ligand undergoes bond cleavage giving the known trans-[PtCl(2){N(H)C(4)H(8)O}(Me(2)SO)] (trans-7). All complexes were characterized by elemental analyses (C, H, N), high resolution ESI-MS, IR, (1)H and (13)C{(1)H} NMR spectroscopic techniques, including 2D NMR correlation experiments ((1)H,(1)H-COSY, (1)H,(13)C-HMQC/(1)H,(13)C HSQC, (1)H,(13)C-HMBC, and (1)H,(1)H-NOESY). The structures of cis-1, cis-3, 4·[PtCl(3)(Me(2)SO)](2)·(H(2)O)(2), 4·[BPh(4)](2)·(NH(2)CONMe(2)) and 5 were determined by a single-crystal X-ray diffraction.  相似文献   

12.
A reaction of trans-[Ir(4-C(5)NF(4))(η(2)-C(2)H(4))(PiPr(3))(2)] (1) with an excess of water in THF at room temperature affords the hydrido hydroxo complex trans-[Ir(4-C(5)NF(4))(H)(OH)(PiPr(3))(2)] (2). Treatment of 2 with CO furnishes trans-[Ir(4-C(5)NF(4))(H)(OH)(CO)(PiPr(3))(2)] (3). Reductive elimination of water from 3 leads to the formation of the iridium(I) carbonyl complex trans-[Ir(4-C(5)NF(4))(CO)(PiPr(3))(2)] (4). The insertion of CO(2) into the Ir-O bond of 2 forms the hydrido hydrogencarbonato complex trans-[Ir(4-C(5)NF(4))(H)(κ(2)-(O,O)-O(2)COH)(PiPr(3))(2)] (5). Treatment of 2 with NH(3) in C(6)D(6) yields trans-[Ir(4-C(5)NF(4))(H)(OH)(NH(3))(PiPr(3))(2)] (6). Storage of the reaction mixture at room temperature reveals the formation of the N-H activation product [Ir(4-C(5)NF(4))(H)(μ-NH(2))(NH(3))(PiPr(3))](2) (7).  相似文献   

13.
Halogenated 1,3,5-triazapentadienyl ligands [N{(C(3)F(7))C(C(6)F(5))N}(2)](-), [N{(CF(3))C(C(6)F(5))N}(2)](-) and [N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)](-), alone or in combination with other N-donors like CH(3)CN, CH(3)(CH(2))(2)CN, and N(C(2)H(5))(3), have been used in the stabilization of thermally stable, two-, three- or four-coordinate silver(i) adducts. X-Ray crystallographic analyses of {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag}(n), {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag(NCCH(3))}(n), {[N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)]Ag(NCCH(3))}(n), {[N{(CF(3))C(C(6)F(5))N}(2)]Ag(NCCH(3))(2)}(n) and {[N{(C(3)F(7))C(C(6)F(5))N}(2)]Ag(NCC(3)H(7))}(n) revealed the presence of bridging 1,3,5-triazapentadienyl ligands bonded to silver through terminal nitrogen atoms. These adducts are polymeric in the solid state. [N{(C(3)F(7))C(2,6-Cl(2)C(6)H(3))N}(2)]AgN(C(2)H(5))(3) is monomeric and features a 1,3,5-triazapentadienyl ligand bonded to Ag(I) in a κ(1)-fashion via only one of the terminal nitrogen atoms. The solid state structure of [N{(C(3)F(7))C(C(6)F(5))N}(2)]H has also been reported and it forms polymeric chains via inter-molecular N-H···N hydrogen-bonding.  相似文献   

14.
Addition of excess R(2)NCN to an aqueous solution of K(2)[PtCl(4)] led to the precipitation of [PtCl(2)(NCNR(2))(2)] (R(2) = Me(2) 1; Et(2) 2; C(5)H(10) 3; C(4)H(8)O, 4) in a cis/trans isomeric ratio which depends on temperature. Pure isomers cis-1-3 and trans-1-3 were separated by column chromatography on SiO(2), while trans-4 was obtained by recrystallization. Complexes cis-1-3 isomerize to trans-1-3 on heating in the solid phase at 110 degrees C; trans-1 has been characterized by X-ray crystallography. Chlorination of the platinum(II) complexes cis-1-3 and trans-1-4 gives the appropriate platinum(IV) complexes [PtCl(4)(NCNR(2))(2)] (cis-5-7 and trans-5-8). The compound cis-6 was also obtained by treatment of [PtCl(4)(NCMe)(2)] with neat Et(2)NCN. The platinum(IV) complex trans-[PtCl(4)(NCNMe(2))(2)] (trans-5) in a mixture of undried Et(2)O and CH(2)Cl(2) undergoes facile hydrolysis to give trans-[PtCl(4)[(H)=C(NMe(2))OH](2)] (9; X-ray structure has been determined). The hydrolysis went to another direction with the cis-[PtCl(4)(NCNR(2))(2)] (cis-5-7) which were converted to the metallacycles [PtCl(4)[NH=C(NR(2))OC(NR(2))=NH]] (11-13) due to the unprecedented hydrolytic coupling of the two adjacent dialkylcyanamide ligands giving a novel (for both coordination and organic chemistry) diimino linkage. Compounds 11-13 and also 14 (R(2) = C(4)H(8)O) were alternatively obtained by the reaction between cis-[PtCl(4)(MeCN)(2)] and neat undried NCNR(2). The structures of complexes 11, 13, and 14 were determined by X-ray single-crystal diffraction. All the platinum compounds were additionally characterized by elemental analyses, FAB mass-spectrometry, and IR and (1)H and (13)C[(1)H] NMR spectroscopies.  相似文献   

15.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

16.
Two equivalents of Ph(2)PC triple bond CR (R=H, Me, Ph) react with thf solutions of cis-[Ru(acac)(2)(eta(2)-alkene)(2)] (acac=acetylacetonato; alkene=C(2)H(4), 1; C(8)H(14), 2) at room temperature to yield the orange, air-stable compounds trans-[Ru(acac)(2)(Ph(2)PC triple bond CR)(2)] (R=H, trans-3; Me=trans-4; Ph, trans-5) in isolated yields of 60-98%. In refluxing chlorobenzene, trans-4 and trans-5 are converted into the yellow, air-stable compounds cis-[Ru(acac)(2)(Ph(2)PC triple bond CR)(2)] (R=Me, cis-4; Ph, cis-5), isolated in yields of ca. 65%. From the reaction of two equivalents of Ph(2)PC triple bond CPPh(2) with a thf solution of 2 an almost insoluble orange solid is formed, which is believed to be trans-[Ru(acac)(2)(micro-Ph(2)PC triple bond CPPh(2))](n) (trans-6). In refluxing chlorobenzene, the latter forms the air-stable, yellow, binuclear compound cis-[{Ru(acac)(2)(micro-Ph(2)PC triple bond CPPh(2))}(2)] (cis-6). Electrochemical studies indicate that cis-4 and cis-5 are harder to oxidise by ca. 300 mV than the corresponding trans-isomers and harder to oxidise by 80-120 mV than cis-[Ru(acac)(2)L(2)] (L=PPh(3), PPh(2)Me). Electrochemical studies of cis-6 show two reversible Ru(II/III) oxidation processes separated by 300 mV, the estimated comproportionation constant (K(c)) for the equilibrium cis-6(2+) + cis6 <=> 2(cis-6(+)) being ca. 10(5). However, UV-Vis spectra of cis-6(+) and cis-6(2+), generated electrochemically at -50 degrees C, indicate that cis-6(+) is a Robin-Day Class II mixed-valence system. Addition of one equivalent of AgPF(6) to trans-3 and trans-4 forms the green air-stable complexes trans-3 x PF(6) and trans-4 x PF(6), respectively, almost quantitatively. The structures of trans-4, cis-4, trans-4 x PF(6) and cis-6 have been confirmed by X-ray crystallography.  相似文献   

17.
The first phosphane complexes of germanium(iv) fluoride, trans-[GeF(4)(PR(3))(2)] (R = Me or Ph) and cis-[GeF(4)(diphosphane)] (diphosphane = R(2)P(CH(2))(2)PR(2), R = Me, Et, Ph or Cy; o-C(6)H(4)(PR(2))(2), R = Me or Ph) have been prepared from [GeF(4)(MeCN)(2)] and the ligands in dry CH(2)Cl(2) and characterised by microanalysis, IR, Raman, (1)H, (19)F{(1)H} and (31)P{(1)H} NMR spectroscopy. The crystal structures of [GeF(4)(diphosphane)] (diphosphane = Ph(2)P(CH(2))(2)PPh(2) and o-C(6)H(4)(PMe(2))(2)) have been determined and show the expected cis octahedral geometries. In anhydrous CH(2)Cl(2) solution the complexes are slowly converted into the corresponding phosphane oxide adducts by dry O(2). The apparently contradictory literature on the reaction of GeCl(4) with phosphanes is clarified. The complexes trans-[GeCl(4)(AsR(3))(2)] (R = Me or Et) are obtained from GeCl(4) and AsR(3) either without solvent or in CH(2)Cl(2), and the structures of trans-[GeCl(4)(AsEt(3))(2)] and Et(3)AsCl(2) determined. Unexpectedly, the complexes of GeF(4) with arsane ligands are very unstable and have not been isolated in a pure state. The behaviour of the germanium(iv) halides towards phosphane and arsane ligands are compared with the corresponding silicon(iv) and tin(iv) systems.  相似文献   

18.
Treatment of trans-[MHCl(dmpe)(2)] (M = Fe, Ru) with hydrazine afforded the hydrido hydrazine complexes cis- and trans-[MH(N(2)H(4))(dmpe)(2)](+) which have been characterized by NMR spectroscopy ((1)H, (31)P, and (15)N). Both cis and trans isomers of the Fe complex and the trans isomer of the Ru complex were characterized by X-ray crystallography. Reactions with acid and base afforded a range of N(2)H(x) complexes, including several unstable hydrido hydrazido complexes.  相似文献   

19.
The reaction of trans-[RuCl(2)(PPh(3))(3)] (Ph = C(6)H(5)) with 2-thio-1,3-pyrimidine (HTPYM) and 6-thiopurines (TPs) produced mainly crystalline solids that consist of cis,cis,trans-[Ru(PPh(3))(2)(N,S-TPYM)(2)] (1) and cis,cis,trans-[Ru(PPh(3))(2)(N(7),S-TPs)(2)]X(2) (X = Cl(-), CF(3)SO(3)(-)). In the case of TPs, other coordination isomers have never been isolated and reported. Instead, the mother liquor obtained after filtration of 1 produced red single crystals of trans,cis,cis-[Ru(PPh(3))(2)(N,S-TPYM)(2)].2H(3)O(+).2Cl(-) (2.2H(3)O(+).2Cl(-)). Selected ruthenium(II)-thiobase complexes were studied for their structural, reactivity, spectroscopic, redox, and cytotoxic properties. Single crystals of 1 contain thiopyrimidinato anions chelated to the metal center via N and S. The Ru[bond]N bonds are significantly elongated for 1 [2.122(2) and 2.167(2) A] with respect to 2 [2.063(3) A] because of the trans influence from PPh(3). The coordination pseudo-octahedron for 2 is significantly elongated at the apical sites (PPh(3) ligands). Solutions of cis,cis,trans isomers in air are stable for weeks, whereas those of 2 turn green within 24 h, in agreement with the respective redox potentials. cis,cis,trans- and trans,cis,cis-[Ru(PH(3))(2)(N,S-TPYM)(2)], as optimized through the DFT methods at the Becke3LYP level are in good agreement with experimental geometrical parameters (1 and 2), with cis,cis,trans being more stable than trans,cis,cis by 3.88 kcal. The trend is confirmed by molecular modeling based on semiempirical (ZINDO/1) and molecular mechanics (MM) methods. Cytotoxic activity measurements for cis,cis,trans-[Ru(PPh(3))(N-THZ)(N(7),S -H(2)TP)(2)]Cl(2) (4) (THZ = thiazole, H(2)TP = 6-thiopurine) and cis,cis,trans-[Ru(PPh(3))(2)(N(7),S-HTPR)2]Cl(2) (5) (HTPR = 6-thiopurine riboside) against ovarian cancer cells A2780/S gave IC(50) values of 17 +/- 1 and 29 +/- 9 microM, respectively. Furthermore, the spectral analysis of HTPYM, TPs, and their Ru(II) complexes in solution shows that intense absorptions occur in the UVA/vis region of light, whereas standard nucleobases absorb in the UVB region.  相似文献   

20.
Treatment of the bridging bidentate 1,Z-bis(aminopropyl)-1,Z-dicarba-closo-dodecaborane(12)(1,Z-bis(aminopropyl)-1,Z-carborane) ligands of the type 1,Z-[H(2)N(CH(2))(3)](2)-1,Z-C(2)B(10)H(10)(L(1), Z= 7, 5) or (L(2), Z= 12, 6) with two equivalents of trans-[PtClI(2)(NH(3))](-), followed by halogen ligand metathesis with AgOTf and HCl((aq)) afforded the novel diplatinum(II)-amine species cis-[[PtCl(2)(NH(3))](2)L(n)](7(n= 1) or 8(n= 2), respectively). Similarly, the reaction of L(1) or L(2) with the labile trans-[PtCl(dmf)(NH(3))(2)](+) afforded trans-[[PtCl(NH(3))(2)](2)L(n)](OTf)(2)(9(n= 1) or 10(n= 2), respectively) in good yield and purity. However, isolation of the analogous 1,2-carborane complexes was not possible owing to decomposition reactions that led to extensive degradation of the carborane cage and reduction of the metal centre. The mixed dinuclear complex [cis-[PtCl(2)(NH(3))]-L(1)-trans-[PtCl(NH(3))(2)]]OTf (19) was prepared by treatment of the Boc-protected amine ligand 1-[(Boc)(2)N(CH(2))(3)]-7-[H(2)N(CH(2))(3)]-1,7-C(2)B(10)H(10)(L(3), 15) with trans-[PtCl(dmf)(NH(3))(2)](+) to yield trans-[PtCl(NH(3))(2)L(3)]OTf (16), followed by acid deprotection of the pendant amine group, complexation with trans-[PtClI(2)(NH(3))](-), and halogen ligand metathesis using AgOTf and HCl((aq)). A novel trinuclear species containing 5 was prepared by the addition of two equivalents of 15 to the labile precursor cis-[Pt(dmf)(2)(NH(3))(2)](2+) followed by acid deprotection of the pendant amine groups. Further complexation with two equivalents of trans-[PtClI(2)(NH(3))](-) followed by halogen ligand metathesis using AgOTf and HCl((aq)) afforded the triplatinum(II)-amine species [cis-[Pt(NH(3))(2)(L(1))(2)]-cis-[PtCl(2)(NH(3))](2)](OTf)(2)(23). Complexes 7-10, 19 and 23 represent the first examples of multinuclear platinum(ii)-amine derivatives containing carborane cages. Preliminary in vitro cytotoxicity studies for selected complexes are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号