首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Metal-Enhanced Fluorescence (MEF) has become an important method in biomedical sensing. In this paper, we present the distance-dependent MEF of sulforhodamine B (SRB) monolayer on silver island films (SIFs). SRB is electrostatically incorporated into the Langmuir-Blodgett (LB) layers of octadecylamine (ODA) deposited on glass and SIFs substrates. The distances between SRB and SIFs or glass surfaces are controlled by depositing a varied number of inert stearic acid (SA) spacer layers. SRB is incorporated into positively charged LB layers of ODA by immersing the ODA deposited substrates into aqueous solution of SRB. Dye incorporated ODA layers with 10 nm separation distance from the SIFs surface show maximum metal-enhanced fluorescence intensity; ~7-fold increase in intensity as compared to that from the glass surface. The corresponding enhancement factor is reduced with increasing or decreasing the probe distance from the SIFs surface. Additionally, SRB on SIF surfaces show reduced lifetimes. We observed the shortest lifetime from the SRB with 5 nm distance from the SIF surfaces and the lifetime increased consistently with increasing the distances between the fluorophore and the SIFs surface. These observed spectral changes, increase in fluorescence intensity and decreased fluorescence lifetimes, are in accordance with the expected effects due to near-field interactions between the silver nanoparticles and fluorophores. We have also analyzed the complex fluorescence heterogeneous decays on metallic nanostructured surfaces using continuous distributions of decay times. The decay-time distributions appear to be sensitive to the distance between the metal and fluorophore and represent the underlying heterogeneity of the samples. The present systematic study provides significant information on the effect of fluorophore distance on the metal-enhanced fluorescence phenomenon.  相似文献   

2.
Peng HI  Miller BL 《The Analyst》2011,136(3):436-447
The emerging field of plasmonics, the study of electromagnetic responses of metal nanostructures, has revealed many novel signal enhancing phenomena. As applied to the development of label-free optical DNA biosensors, it is now well established that plasmon-based surface enhanced spectroscopies on nanostructured metal surfaces or metal nanoparticles can markedly improve the sensitivity of optical biosensors, with some showing great promise for single molecule detection. In this review, we first summarize the basic concepts of plasmonics in metal nanostructures, as well as the characteristic optical phenomena to which plasmons give rise. We will then describe recent advances in optical DNA biosensing systems enabled by metal nanoparticle-derived plasmonic effects, including the use of surface enhanced Raman scattering (SERS), colorimetric methods, "scanometric" processes, and metal-enhanced fluorescence (MEF).  相似文献   

3.
Detection of the intrinsic fluorescence from proteins is important in bio-assays because it can potentially eliminate the labeling of external fluorophores to proteins. This is advantageous because using external fluorescent labels to tag biomolecules requires chemical modification and additional incubation and washing steps which can potentially perturb the native functionality of the biomolecules. Hence the external labeling steps add expense and complexity to bio-assays. In this paper, we investigate for the first time the feasibility of using bimetallic nanostructures made of silver (Ag) and aluminum (Al) to implement the metal enhanced fluorescence (MEF) phenomenon for enhancing the intrinsic emission of biomolecules in the ultra-violet (UV) spectral region. Fluorescence intensities and lifetimes of a tryptophan analogue N-acetyl-L-tryptophanamide (NATA) and a tyrosine analogue N-acetyl-L-tyrosinamide (NATA-tyr) were measured. Increase in fluorescence intensities of upto 10-fold and concurrent decrease in lifetimes for the amino acids were recorded in the presence of the bimetallic nanostructures when compared to quartz controls. We performed a model protein assay involving biotinylated bovine serum albumin (bt-BSA) and streptavidin on the bimetallic nanostructured substrate to investigate the distance dependent effects on the extent of MEF from the bimetallic nanostructures and found a maximum enhancement of over 15-fold for two layers of bt-BSA and streptavidin. We also used finite difference time domain (FDTD) calculations to explore how bimetallic nanostructures interact with plane waves and excited state fluorophores in the UV region and demonstrate that the bimetallic substrates are an effective platform for enhancing the intrinsic emission of proteins and other biomolecules.  相似文献   

4.
The layer-by-layer (LbL) assembly of salt-containing nonstoichiometric polyelectrolyte complexes (PECs) with oppositely charged uncomplexed polyelectrolyte for the fabrication of dewetting-induced porous polymeric films has been systematically investigated. Salt-containing poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) complexes (noted as PAH-PAA) with a molar excess of PAH were LbL assembled with polyanion poly(sodium 4-styrenesulfonate) (PSS) to produce PSS/PAH-PAA films. The structure of the PAH-PAA complexes is dependent on the concentration of NaCl added to their aqueous dispersions, which can be used to tailor the structure of the LbL-assembled PSS/PAH-PAA films. Porous PSS/PAH-PAA films are fabricated when salt-containing PAH-PAA complexes with a large amount of added NaCl are used for LbL assembly with PSS. In-situ and ex-situ atomic force microscopy measurements disclose that the dewetting process composed of pore nucleation and pore growth steps leads to the formation of pores in the LbL-assembled PSS/PAH-PAA films. The present study provides a facile way to fabricate porous polymeric films by dewetting LbL-assembled polymeric films comprising salt-containing PECs.  相似文献   

5.
We described the effect of fluorophore distance from the silver island films (SIFs) on the metal-enhanced fluorescence (MEF) from two newly developed long-chain nitrobenzoxadiazole derivatives (NBD-C16 and NBD-C18). The well-established Langmuir-Blodgett technique is used to deposit the fluorophores at defined distances from the SIFs surface, and an inert amphiphilic stearic acid is used to control the distance. NBD probes deposited directly on the SIFs surface show the highest metal-enhanced fluorescence of approximately 32-fold, and both of the probes that were studied show a consistent decrease in metal-enhanced fluorescence when increasing the distance from the fluorophore to the SIFs surface. The lowest fluorescence enhancement of approximately 4-fold is observed for the probes located 90 nm from the SIFs surface. Additionally, we also have noticed the shortest fluorescence lifetimes for the NBD probes deposited directly onto the SIFs surface, and the lifetimes are consistently increased when increasing the distances between the fluorophore and SIFs surfaces. These contrasting spectral changes, enhanced fluorescence, and decreased fluorescence lifetimes are in accordance with an increase in the rate of radiative decay for fluorophores near the silver particles. The present study provides significant information on the effect of fluorophore distance on the metal-enhanced fluorescence phenomenon.  相似文献   

6.
In recent years, there has been a growing interest in the studies involving the interactions of fluorophores with plasmonic nanostructures or nanoparticles. These interactions lead to several favorable effects such as increase in the fluorescence intensities, increased photostabilities, and reduced excited-state lifetimes that can be exploited to improve the capabilities of present fluorescence methodologies. In this regard, we report the use of newly developed silver-gold nanocomposite (Ag-Au-NC) structures as substrates for metal-enhanced fluorescence (MEF). The Ag-Au-NC substrates have been prepared by a one-step galvanic replacement reaction from thin silver films coated on glass slides. This approach is simple and suitable for the fabrication of MEF substrates with large area. We have observed about 15-fold enhancement in the fluorescence intensity of ATTO655 from ensemble fluorescence measurements using these substrates. The fluorescence enhancement on the Ag-Au-NC substrates is also accompanied by a reduction in the fluorescence lifetime of ATTO655, which is consistent with the fluorophore-plasmon coupling mechanism. Single-molecule fluorescence measurements have been performed to gain more insight into the metal-fluorophore interactions and to unravel the heterogeneity in the interaction of individual fluorophores with the fabricated substrates. The single-molecule studies are in good agreement with the ensemble measurements and show maximum enhancements of ~50-fold for molecules located in proximity to the "hotspots" on the substrates. In essence, the Ag-Au-NC substrates have a very good potential for various MEF applications.  相似文献   

7.
Polyelectrolyte multilayer films adsorbed on gold surfaces were studied by combined ellipsometric and electrochemical methods. Multilayers were composed of “synthetic” (poly(4-styrenesulfonic acid) ammonium salt (PSS) and poly(allylamine hydrochloride) (PAH) (PSS/PAH)) and “semi-natural” (carboxymethyl cellulose (CMC) and chitosan (CHI) (CMC/CHI)) polyelectrolytes. It was found that only PSS/PAH Layer-by-Layer (LbL) assembled structures result in dense surface confined films that limit permeability of small molecules, such as ferri-/ferrocyanide. The PSS/PAH assemblies can be envisaged as films with pinholes, through which small molecules diffuse. During the LbL deposition process of these films a number of pinholes quickly decay. A representative pinhole diameter was found to be approximately 20 μm, which determines the diffusion of small molecules through LbL films, and yet remains constant when the film consists of a few LbL assembled polyelectrolyte bilayers. CMC/CHI LbL assemblies at gold electrode surfaces give very low density films, which do not limit the diffusion of ferri-/ferrocyanide between the surface of the electrode and the solution.  相似文献   

8.
In this critical and timely review, the effects of anisotropic silver nanostructures on the emission intensity and photostability of a key fluorophore that is frequently used in many biological assays is examined. The silver nanostructures consist of triangular, rod-like, and fractal-like nanoparticles of silver deposited on conventional glass substrates. The close proximity to silver nanostructures results in greater intensity and photostability of the fluorophore than for fluorophores solely deposited on glass substrates. These new anisotropic silver nanostructure-coated surfaces show much more favorable effects than silver island films or silver colloid-coated substrates. Subsequently, the use of metal-enhanced fluorescence (MEF) for biosensing applications is discussed.  相似文献   

9.
In the last few years, silver nanoparticles have been proposed as a promising alternative for the label-free detection of proteins via metal-enhanced fluorescence. Generally, the aromatic amino acid tryptophan is most frequently used in this type of studies, because the intrinsic fluorescence of proteins is usually dominated by tryptophan emissions. In the present study, we evaluated the fluorescence behavior of tryptophan in the presence of a silver colloid with nanoparticles of 100 nm in diameter. The results showed that a nanoparticles concentration of 32 mg L?1 induced maximum fluorescence enhancement. However, the metal-enhanced fluorescence was dependent on the emission wavelength of tryptophan, and this phenomenon was closely related to the metal surface reabsorption process (inner filter effect), suggesting that the plasmon resonance reabsorption effect should be taken into account in analyses involving protein studies by metal-enhanced fluorescence.  相似文献   

10.
In this paper, we report on the Ag nanoparticle-containing hybrid poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-co-PAA) microgels with pH- and thermoresponsive metal-enhanced fluorescence (MEF). The hybrid microgels were prepared by in situ reducing Ag salts to Ag nanoparticles in the PNIPAM-co-PAA microgels. According to the interaction distance-dependent nature of MEF effects, we can realize a controllable MEF effect by adjusting the average interaction distance between fluorophores and Ag nanoparticles due to the good stimuli-responsive swelling-shrinking behavior of the hybrid microgels. The results show that MEF effect can be well tuned in the pH region 2-12 as well as the temperature region of 20-50 °C. By this method, an enhanced fluorescence detection can possibly be manipulated by adjusting external stimuli such as pH and temperature.  相似文献   

11.
Two methods have been considered for the deposition of silver nanorods onto conventional glass substrates. In the first method, silver nanorods were deposited onto 3-(aminopropyl)triethoxysilane-coated glass substrates simply by immersing the substrates into the silver nanorod solution. In the second method, spherical silver seeds that were chemically attached to the surface were subsequently converted and grown into silver nanorods in the presence of a cationic surfactant and silver ions. The size of the silver nanorods was controlled by sequential immersion of silver seed-coated glass substrates into a growth solution and by the duration of immersion, ranging from tens of nanometers to a few micrometers. Atomic force microscopy and optical density measurements were used to characterize the silver nanorods deposited onto the surface of the glass substrates. The application of these new surfaces is for metal-enhanced fluorescence (MEF), whereby the close proximity of silver nanostructures can alter the radiative decay rate of fluorophores, producing enhanced signal intensities and an increased fluorophore photostability. In this paper, it is indeed shown that irregularly shaped silver nanorod-coated surfaces are much better MEF surfaces as compared to traditional silver island or colloid films. Subsequently, these new silver nanorod preparation procedures are likely to find a common place in MEF, as they are a quicker and much cheaper alternative as compared to surfaces fabricated by traditional nanolithographic techniques.  相似文献   

12.
We present a study of Fo?rster resonance energy transfer (FRET) between two emissive conjugated polyelectrolytes (CPEs) in layer-by-layer (LbL) self-assembled films as a means of examining their organization and architecture. The two CPEs are a carboxylic acid functionalized polyfluorene (PFl-CO(2)) and thienylene linked poly(phenylene ethynylene) (PPE-Th-CO(2)). The PFl-CO(2) presents a maximum emission at 418 nm, while the PPE-Th-CO(2) has an absorption λ(max) centered at 431 nm, in sufficient proximity for effective FRET. Several LbL films have been constructed using varied concentrations of the deposition solutions and identity of the buffer layers separating the two emissive layers, using a system of either weak polyelectrolytes, poly(allylamine hydrochloride) (PAH)/poly(sodium methacrylate) (PMA), or strong polyelectrolytes, poly(diallylammonium chloride) (PDDA)/poly(styrene sulfonate) sodium (PSS). The efficiency of FRET has been monitored using fluorescence spectroscopy. Initially, the fluorescence of the PFl-CO(2) (E(g) ~ 3.0 eV), which emits at 420 nm, is quenched by the lower band gap PPE-Th-CO(2) (E(g) ~ 2.5 eV). For films using the PAH/PMA system as buffer bilayers and deposited from 1 mM solutions, the PFl-CO(2) fluorescence is progressively recovered as the number of intervening buffer bilayers is increased. Ellipsometry measurements indicate that energy transfer between the two emissive layers is efficient to a distance of ca. 7 nm.  相似文献   

13.
Two combinations of sodium poly(4-styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) of different chain length and charge density are employed to construct multilayer films. The polyelectrolytes are assembled layer-by-layer on colloidal particles in the absence of salt. We have investigated the formation and electrical characteristics of the films by using electric light scattering technique. The results show that the film thickness is independent of the chain length when fully charged PAH (at pH 4.6) is combined with fully charged PSS. When the films are prepared with less charged PAH (at pH 6.7) and fully charged PSS, lower thickness is found for the film with shorter polymer chains. In all cases, the thickness increment realized on addition of the polymer with lower molar concentration is partially lost on exposure to the solution with higher concentration of the oppositely charged partner. When the film growth is regular (at equal molar concentrations of the fully charged polyelectrolytes), the ratio of PSS to PAH charge, estimated from the electro-optical effect values, exceeds 1. The electro-optical effect is also higher for the films ending with PSS when fully charged PSS is combined with less charged PAH (at pH 6.7). This reveals the key role of the charge in the last-adsorbed layer for the electro-optical behavior of the whole film.  相似文献   

14.
Formamide, in its pure state, has been used as a working solvent for layer-by-layer (LbL) polyelectrolyte self-assembly. Polystyrene sulfonate (PSS) and polyallylamine hydrochloride (PAH) polyelectrolyte films were deposited onto planar substrates and colloidal particles. Film deposition was confirmed using quartz crystal microbalance and zeta potential measurements. Formamide was used as an alternative to the water-based working solvents commonly used for LbL self-assembly. Few LbL self-assembly studies using nonaqueous solvents have been reported. Most studies performed with nonaqueous solvents have required the addition of small volumes of water to dissolve the polyelectrolytes. Conversely, the high dielectric constant of pure formamide led to the dissolution and transport of PSS and PAH. Using formamide, it is possible to deposit nanometer thick polyelectrolyte films onto water-sensitive surfaces. Formamide can be thus be used for encapsulating water sensitive hydrogen storage materials within polyelectrolyte films.  相似文献   

15.
Li JR  Henry GC  Garno JC 《The Analyst》2006,131(2):244-250
Arrays of protein nanostructures can be formed on surfaces such as mica(0001) and Au(111) using lithography with polystyrene latex particles. To create arrays of protein nanostructures, monodisperse latex spheres are mixed with the desired protein (e.g. BSA, protein A or IgG) and deposited onto substrates. Protein-coated nanospheres self-assemble into organized crystalline layers when dried on flat surfaces. After rinsing with water, dried latex spheres are displaced to expose periodic arrays of uncovered circular cavities. The immobilized proteins remain attached to the surface and form nanopatterns over broad areas (microns) corresponding to the thickness of a single layer of proteins. The nanostructures of immobilized proteins maintain the order and periodicity of the latex scaffold. The morphology and diameter of the protein nanostructures are tuneable by selecting the ratios of protein-to-latex and the diameters of latex spheres. Well-defined nanostructured surfaces of proteins supply a tool for fundamental investigations of protein binding interactions in biological systems at the nanoscale and have potential applications in biochip and biosensing systems.  相似文献   

16.
A reversible drug delivery system based on spontaneous deposition of a model protein into preformed microcapsules has been demonstrated for protein delivery applications. Layer-by-Layer assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) onto polystyrene sulfonate (PSS) doped CaCO3 particles, followed by core removal yielded intact hollow microcapsules having a unique property to induce spontaneous deposition of bovine serum albumin (BSA) at pH below its isoelectric point of 4.8, where it was positively charged. These capsules showed reversible pH dependent open and closed states to fluorescence labeled dextran (FITC-Dextran) and BSA (FITC-BSA). The loading capacity of BSA increased from 9.1 × 107 to 2.03 × 108 molecules per capsule with decrease in pH from 4.5 to 3. The loading of BSA-FITC was observed by confocal laser scanning microscopy (CLSM), which showed homogeneous distribution of protein inside the capsule. Efficient loading of BSA was further confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The interior capsule concentration was as high as 209 times the feeding concentration when the feeding concentration was increased from 1 to 10 mg/ml. The deposition was initially controlled by spontaneous loading mechanism at lower BSA concentration followed by diffusion controlled loading at higher concentration; which decreased the loading efficiency from 35% to 7%. Circular dichroism (CD) measurements and Fourier transform infrared spectroscopy (FTIR) confirmed that there was no significant change in conformation of released BSA in comparison with native BSA. The release was initially burst in the first 0.5 h and sustained up to 5 h. The hollow capsules were found to be biocompatible with mouse embryonic fibroblast (MEF) cells during in vitro cell culture studies. Thus these pH sensitive polyelectrolyte microcapsules may offer a promising delivery system for water soluble proteins and peptides.  相似文献   

17.
The aim of our present study was the development of a drug multilayer-based carrier system for delivery of water-insoluble drugs. As drug, we applied the anticancer drug 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin, mTHPP, which is a model photosensitizer for photodynamic therapy. Gold nanoparticles (AuNP) with a diameter of 14.5 ± 0.9 nm were prepared and used as template for the layer-by-layer approach. The drug and the negatively charged polyelectrolyte (PE) poly(styrene sulfonate) sodium salt (PSS) were complexed with a new developed method using freeze-drying. The complexation efficiency was determined to be ~11-12 monomers PSS per mTHPP molecule by CHNS analysis and UV/vis measurement. Molecular docking simulations revealed π-π interactions and H-bonding to be the responsible mechanisms. A drug multilayer system based on the layer-by-layer (LbL) technique utilized the water-soluble complex as anionic layer material and poly(allylamine hydrochloride) (PAH) as cationic layer. The modified AuNP were characterized by different physicochemical techniques such as UV/vis, ζ-potential, ICP-OES, and TEM. To the best of our knowledge, we could demonstrate for the first time the adsorption of three drug layers to a nanoparticulate system. Furthermore, the adaptation of the LbL-technique resulted in drastically increased drug deposition efficiency (factor of 100). Furthermore, we developed a new and comfortable way to solubilize water-insoluble drugs in water.  相似文献   

18.
The stepwise assembly of negatively charged organic molecules (poly(sodium 4-styrenesulfonate) (PSS) or tetrasodium-meso-tetra(4-sulfonatophenyl) porphine (TPPS)) and positively charged TiO2 colloids on pretreated substrate surfaces utilizing the layer-by-layer (LbL) approach was investigated. The step-by-step formation of these films was studied by UV–vis spectrophotometry and electrochemistry. Photocurrent was generated upon light irradiation of the hybrid thin films assembled on fluorine-doped tin oxide (FTO) conducting glass, which increased linearly as the deposited bilayers increased. In addition, compared to PSS/TiO2 hybrid thin films, the enhancement of the generated photocurrent and the photocurrent response within the wavelength range from 400 to 450 nm were observed in the TPPS/TiO2 hybrid thin films. This was attributed to the dye-sensitized effect of the layered TPPS molecules. It was demonstrated that electrostatic LbL films were attractive systems for the photoelectrochemical investigation, and the control of the generated photocurrent could be achieved by the structure of the multilayered films.  相似文献   

19.
We report here the use of plasmonic metal nanostructures in the form of silver island films (SiFs) to enhance the fluorescence emission of five different phycobiliproteins. Our findings clearly show that the phycobiliproteins display up to a 9-fold increase in fluorescence emission intensity, with a maximum 7-fold decrease in lifetime when they are assembled as a monolayer above SiFs, as compared to a monolayer assembled on the surface of amine-terminated glass slides of the control sample. The study was also repeated with a thin liquid layer of the phycobiliproteins sandwiched between two glass substrates (and a SiFs and a glass substrate) clamped together. Similarly, the results show a maximum 10-fold increase in fluorescence emission intensity coupled with a 2-fold decrease in lifetime of the phycobiliproteins in the SiF-glass setup as compared to the glass control sample, implying that near-field enhancement of phycobiliprotein emission can be attained both with and without chemical linkage of the proteins to the SiFs. Hence, our results clearly show that metal-enhanced fluorescence (MEF) can potentially be employed to increase the sensitivity and detection limit of the plethora of bioassays that employ phycobiliproteins as fluorescence labels, such as in fluoro-immunoassays where the assay can be tethered on the surface of SiFs, and also in flow cytometry where analytes in the liquid phase could potentially flow through channels coated with SiFs without actually being attached to the silver.  相似文献   

20.
A facile way to prepare free-standing polyelectrolyte multilayer films of poly(sodium 4-styrenesulfonate)(PSS)/poly(diallyldimethylammonium)(PDDA) was developed by applying a new pH-dependent sacrificial system based on cross-linked poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) microgels. The tertiary amine groups of PDMAEMA microgels can be protonated in acidic environment, and the protonated microgels were deposited by layer-by-layer (LbL) technique with PSS. PSS/PDDA multilayer films were constructed on the top of the PSS/microgels sacrificial layers. The LbL assembly process was investigated by UV–vis spectroscopy. Further study shows that the free-standing PSS/PDDA multilayer films can be obtained within 3 min by treating the as-prepared films in alkali aqueous solution with a pH of 12.0. The pH-triggered exfoliation of PSS/PDDA multilayer films provides a simple and facile way to prepare LbL assembled free-standing multilayer films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号