首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
针对当前广泛应用的BOVW模型存在精度不足问题,提出一种基于有序视觉词袋模型的相似性衡量方法.首先,对经过K-mean聚类得到的高维视觉单词,采用LLE(locally linear embedding)流形学习算法降至一维,对一维数据进行排序,并以此顺序对高维单词排序获得有序词袋库;其次,对样本图像的所有局部特征,以该特征在词袋中对应的有序单词索引号构建图像局部特征谱;最后,对训练样本和测试样本的局部特征谱作差求得残差,并以残差的1-范数衡量图像的相似性.KITTI数据集相似性衡量实验表明,有序BOVW模型相似性识别率明显高于无序BOVW模型.  相似文献   

2.
引入纹元森林(semantic texton forest,STF)的视觉词袋模型,联合基于金字塔匹配核的支持向量机,实现图像分类.首先对图像进行采样,提取SIFT(scale-invariant feature transform)特征,然后导入纹元森林构造视觉词典,统计视觉单词出现的频率构建语义词袋模型,最后利用支持向量机进行训练得出分类结果.实验在MSRC21(Microsoft research cambridge)图像库上进行,通过优化实验中的关键参数,引入加权的不平衡训练,提高了图像分类精度.实验结果表明,基于纹元森林的视觉词袋模型具有良好的图像分类效果.  相似文献   

3.
针对电子报图像信息量大、分类精度低和耗时多的特点,提出利用词袋模型提取图片的代表特征,并采用朴素贝叶斯分类器指导特征矩阵分类.结果表明,图像分类精度最大值能达到93%,分类处理时间约为3 s,充分满足了电子报图像分类和个性化推荐的准确性和实时性要求.  相似文献   

4.
基于视觉单词树的快速图像检索   总被引:1,自引:0,他引:1  
建立了一种分层的视觉字典树.首先提取图像特征,定义树的分支因子k和层数L,采用分层聚类算法进行逐层聚类,生成树型结构的视觉单词本,并对每个树节点计算逆向文档频率作为权值,定义得分准则进行图像的相似度匹配.新的视觉单词树由于建立了分层结构,较之传统平面结构的视觉单词本具有计算负荷小、单词个数不受约束、搜索速度快等优越性.在Caltech-101图像库的检索实验中验证了本文算法的快速性和高效性.  相似文献   

5.
传统词袋模型已广泛地应用于图像处理领域,并取得较好效果.但在传统词袋模型中,仅考虑了串行计算,使得整个算法流程耗时较长.考虑现有的多核CPU资源,结合共享存储并行编程(OpenMP)并行框架,对词袋模型进行并行优化,并对其性能进行讨论.主要考虑对特征提取、特征聚类和图像直方图生成三个部分进行并行优化.通过对Caltech 100数据库进行实验,结果表明,该方法可以取得接近于CPU核数的加速比,因此减少了词袋模型的构造和图像直方图生成时间,相对于传统词袋方法提高了算法的效率.  相似文献   

6.
图像分类作为图像处理和计算机视觉的重要组成部分,能够快速准确地对数字图像进行分析和管理.对基于bag of word(BOW)模型的分类问题进行了研究,针对图像理解中的图像相似度之间的关系,提出了一种最大间隔最近邻居分类算法,通过对成对约束的度量学习算法,在优化目标中增加原空间数据分类的约束,学习到了一个可以反映当前样本数据的距离函数,并且在k-Nearest Neighbor(KNN)分类器上使用该学习到的距离函数来构建分类器,并在多个国际标准图像数据集上进行实验,结果表明:该算法相比传统的基于欧式距离的算法具备更高的正确率.  相似文献   

7.
建立机器视觉的几何测量模型,设计实验装置并进行标定。得到输出深度图像中灰度值与物体实际深度之间的反比例关系式。实现物料袋深度信息的提取,很好地反应出物料袋的表面形貌,并对所得结果的误差进行分析。  相似文献   

8.
提出了一种基于决策融合的红外人脸方法。分别通过离散小波变换+主元分析+线性辨别分析、二维PCA方法、离散小波变换+傅里叶变换3种方法将测试图像进行分类,得到3个结果,然后将这3个结果进行融合得到最终的识别结果。实验结果表明:本文提出的方法更能利用人脸图像的有用判别信息,并得到更好的识别效果。  相似文献   

9.
针对网络视频的监管需求,提出了一种基于音频词袋的暴力视频分类方法.采用提取视频中音频流的多媒体内容描述接口(MPEG 7)音频特征(包括音频频谱质心,音频频谱带宽等低层音频特征.)及MPEG 7高层特征——音频签名,来构造每段视频特有的音频词汇,采用该音频词汇出现的频率形成音频词袋特征.采用支持向量机对暴力和非暴力视频进行分类.把词袋模型应用到暴力音频特征分类中,对于不同音频词汇量采用了独特的词汇权重分配机制,同时借助特有的针对暴力视频的分类策略,以提高分类效果.通过3组实验,对不同的音频特征的准确率、不同词汇的分类效果、以及对视觉特征粗分类的精确分类进行了研究.实验结果表明,该方法有较好的查全率.  相似文献   

10.
陈曦 《科学技术与工程》2013,13(20):5988-5992
近年来,基于视频的人脸识别吸引了很多人的关注,同时,视觉词袋(BoWs)模型已成功地应用在图像检索和对象识别中。提出了一种基于视频的人脸识别的方法,它利用了视觉单词,在经典的视觉单词中,第一次在兴趣点提取尺度不变特征变换(SIFT)的图像描述;这些兴趣点由高斯差分(DoG)检测,然后基于k均值的视觉词汇生成,使用视觉单词的索引以取代这些描述符。然而,在人脸图像中,由于面部姿势失真,面部表情和光照条件变化,SIFT描述符不是很好。因此,使用仿射SIFT(ASIFT)描述符作为人脸图像表示法。在Yale及ORL人脸数据库上的实验结果表明,在人脸识别中,基于仿射SIFT描述符的视觉单词方法可以获得较低的错误率。  相似文献   

11.
提出了一种快速有效的人脸识别系统.针对特征脸方法只能识别标准正面人脸的局限性,设计了前端处理模块,首先计算待识别图像中人脸的倾斜角度,进行相应角度的旋转,然后剪切出人脸图像,进行尺寸调整,经过此处理后再进行特征脸识别.利用ORL人脸库和自建人脸库进行仿真实验,实验结果表明,本识别系统速度快,误识率低,具有实用性.  相似文献   

12.
谢红  宁志刚  张磊 《应用科技》2009,36(6):34-37
提出了一种对角DCT和模块2DPCA相结合的人脸识别方法.该算法首先将人脸图像转换成对角图像,提取人脸的行、列与结构信息以求解最优识别向量.然后利用DCT压缩以去掉人眼不敏感的中频分量与高频分量,再由IDCT重建人脸图像,这样有限降低了所需特征的维数,减少了计算量.然后通过模块2DPCA进行特征提取得到人脸识别特征,最后运用最近邻分类器完成人脸的识别.基于ORL及Yale人脸数据库的实验结果证明了该算法的有效性与稳健性.  相似文献   

13.
介绍了在Radon变换下的图像矩特征的抽取方法,并得到图像的矩特征矩阵;进而对矩特征矩阵按行向量进行小波变换组成矩——小波描述子特征矩阵,采用矩阵的加权欧氏距离作为人脸图像的匹配识别的算法,产生较好的结果。  相似文献   

14.
基于PCA与ICA的人脸识别算法研究   总被引:2,自引:0,他引:2  
ICA是一种基于数据高阶统计信息的有效的数据独立特征提取技术,它能够更好地表示人脸的局部特征,ICA是PCA从二阶统计分析向高阶统计分析的拓展.本文提出了一种加权融合这两种技术的人脸特征提取算法,并结合不同的相似性度量进行了人脸识别实验.结果表明,该方法比用一种单独的特征提取方式识别率要高.  相似文献   

15.
针对低分辨率人脸序列的识别这一问题,提出了一种超分辨率重构识别算法.该算法利用低分辨率序列中所提供的关于同一人脸的不同信息,先重构出一幅具有更高分辨率的人脸图像,然后再进行基于Gabor特征的人脸识别.实验结果表明,该算法能够显著提高人脸识别率.  相似文献   

16.
基于小波分析的人脸识别算法   总被引:2,自引:1,他引:2  
提出一种利用小波分析提取人脸特征的方法。对人脸图像做小波分解,用网格划分其子图像,在各子块上提取统计特征,用其训练多分类支持向量机模型,最后用训练好的支持向量机进行人脸识别。选择ORL人脸库对该算法进行实验,与PCA算法的比较结果证明了该算法在识别性能方面的优越性。  相似文献   

17.
在模块2D PCA方法的基础上提出了伪模块2D PCA的人脸识别方法.该方法不仅保留了模块2D PCA方法在特征抽取之前无需将图像矩阵转化为图像向量、能快速降低鉴别特征的维数、可以完全避免使用矩阵的奇异值分解等优点,而且在降维的同时尽可能保持了原样本的变化信息,使得降维后的同类数据样本尽可能保持相似.在ORL人脸数据库上的实验结果表明,伪模块2D PCA在识别性能上优于模块2D PCA.  相似文献   

18.
袁晓琴  黄凤岗  张健沛 《应用科技》2003,30(4):32-33,50
设计一个准确性和鲁棒性均很好的人脸识别系统.该系统利用DCT来提取人脸特征,并且采用归一化技术来提高人脸对几何特征与光照的鲁棒性.并在人脸图像库中对系统进行了测试.实验表明,该系统的识别率和速度要比采用其他识别方法的系统好很多.①  相似文献   

19.
基于主成分分析和Softmax回归模型的人脸识别方法   总被引:1,自引:0,他引:1  
文章介绍一种基于主成分分析(principal component analysis,PCA)和Softmax回归模型相结合的人脸识别方法,该方法通过PCA对整幅图像提取特征,然后将提取的特征经过非线性变换输入到Softmax回归模型中。将主成分提取特征看成是单层神经网络,将它与Softmax回归模型构成的级联结构看作是2层神经网络,在神经网络的训练过程中,主成分的特征向量可以微调。在不同人脸数据库上的实验表明,相比于传统的只用PCA降维的方法,本文方法可达到较高的识别率。  相似文献   

20.
提出一种新的人脸识别算法.首先,利用主动外观模型(active appearance model,AAM)提取人脸五官特征点,进而获得人脸区域的全局纹理特征;然后对人脸区域中的若干个局部子块进行加权局部二元模式(local binary pattern,LBP)的特征组合;接着分别对这两类特征进行最近邻法则匹配;最后,采用基于模糊综合的原理对这两大类特征进行数据融合,给出最终识别结果.实验表明该算法的有效性,能够很好地结合人脸图像全局和局部的互补信息,识别效果优于各单一模块的分类性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号