首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vitro and in vivo metabolism of pyronaridine, an antimalarial agent, was investigated in rats and humans. In vitro incubation of pyronaridine with rat and human liver microsomes resulted in the formation of 11 metabolites, with pyronaridine quinoneimine (M3) as the major metabolite. The structures of pyronaridine metabolites were characterized on the basis of the product ion mass spectra obtained under low-energy collision-induced dissociation (CID) ion trap mass spectrometry. Both pyronaridine (m/z 518) and M3 (m/z 516) produced the same product ion (m/z 447). These results could be explained by the characteristic neutral loss of a 69 Da fragment from M3 via gamma-H rearrangement and 1,7 sigmatropic shift, whereas the neutral loss of a 71 Da fragment from the pyronaridine occurred by charge site-initiated heterolytic cleavage. These fragmentations were further supported by the tandem mass spectrum of D(3)-pyronaridine. Other metabolites generated in the microsomal incubations were carbonylated, hydroxylated and O-demethylated derivatives. Pyronaridine and its metabolites were detected in both feces and urine after intraperitoneal administration to rats. The in vivo metabolic profile in rats was different from the in vitro profile. M3, a chemically reactive quinonimine, was not detected whereas O-demethylated derivatives (M14, M15, M16, and M19) were identified in fecal and urinary extracts. The role of quinoneimine metabolites in pyronaridine-caused toxicity should be further evaluated, although these metabolites or their conjugates were not detected in urine and feces.  相似文献   

2.
Biliary excretion of metabolites of baicalin and baicalein in rats   总被引:3,自引:0,他引:3  
Biliary excretion of metabolites of baicalin, present in Scutellariae Radix, was investigated using rats. The bile of rats administered baicalin orally was shown to contain five major metabolites, which were identified as baicalein 6-O-beta-glucopyranuronoside (M1), 6-O-methyl-baicalein 7-O-beta-glucopyranuronoside (oroxylin A 7-O-beta-glucuronide (M2], baicalein 7-O-beta-glucopyranuronoside (M3), 6-O-beta-glucopyranuronosyl- baicalein 7-O-sulfate (M4), and baicalein 6,7-di-O-beta-glucopyranuronoside (M5) on the basis of chemical and spectroscopic evidence. The bile of rats treated with baicalein also contained the above metabolites. Slower biliary excretion of the metabolites after baicalin administration suggested that it was absorbed as baicalein after hydrolysis in the gastrointestinal tract. The total cumulative amounts of the five metabolites excreted in the bile during 30 h after oral administration of baicalin and that of baicalein were approximately 54% and 40% of the doses, respectively. In addition the bilary metabolites of both drugs were shown to be mainly composed of M5 and M4, which have high polarity and large molecular weight.  相似文献   

3.
Periplocae Cortex, named Xiang-Jia-Pi in China, has been widely used to treat autoimmune diseases, especially rheumatoid arthritis. However, the in vivo substances of Periplocae Cortex remain unknown yet. In this study, an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was used for profiling the chemical components and related metabolites of Periplocae Cortex. A total of 98 constituents were identified or tentatively characterized in Periplocae Cortex: 42 C21 steroidal glycosides, 10 cardiac glycosides, 23 organic acids, 4 aldehydes, 7 triterpenes, and 12 other types. Among them, 18 components were unambiguously identified by comparison with reference standards. In addition, 176 related xenobiotics (34 prototypes and 142 metabolites) were screened out and characterized in rats’ biosamples (plasma, urine, bile, and feces) after the oral administration of Periplocae Cortex. Moreover, the metabolic fate of periplocoside S-4a, a C21 steroidal glycoside, was proposed for the first time. In summary, phase II reactions (methylation, glucuronidation, and sulfation), phase I reactions (hydrolysis reactions, oxygenation, and reduction), and their combinations were the predominant metabolic reactions of Periplocae Cortex in rat. It is the first report to reveal the in vivo substances and metabolism feature of Periplocae Cortex. This study also provided meaningful information for further pharmacodynamics study of Periplocae Cortex, as well as its quality control research.  相似文献   

4.
Rhizoma coptidis has been used for a long time in China owing to its anti-bacterial, anti-diabetes, anti-hyperlipidemia and anti-obesity activities. However, the in vivo biotransformation of Rhizoma coptidis is still unclear to date. In this study, a three-step strategy using UPLC-Q-TOF/MS was applied to clarify the in vivo absorbed constituents and metabolites in rats after oral administration of Rhizoma coptidis. First, alkaloids in Rhizoma coptidis extract were identified. Second, six abundant alkaloids (berberine, palmatine, coptisine, epiberberine, jatrorrhizine, and columbamine) were selected as representative prototypes and the metabolic fates of them in rats were investigated to obtain a database of Rhizoma coptidis-derived metabolites. Finally, the metabolic profiles of Rhizoma coptidis were fully elucidated based on the above-mentioned results. In summary, 29 alkaloids were identified in Rhizoma coptidis, and a database of Rhizoma coptidis-derived metabolites was obtained with 144 characterized metabolites. A total of 89 xenobiotics including 12 absorbed constituents and 77 metabolites were identified in dosed rat biosamples. Major metabolic pathways of Rhizoma coptidis were hydroxylation, reduction, methylation, demethylation, demethylenation, desaturation, glucuronidation and sulfation. This is the first systematic study on the in vivo absorbed constituents and metabolic profiling of Rhizoma coptidis and will be beneficial for its further studies.  相似文献   

5.
Eupatilin (5,7-dihydroxy-3',4',6-trimethoxy flavone) is an active ingredient of an ethanol extract of Artemisia asiatica (DA-9601) that is used in the treatment of gastritis. In vitro and in vivo metabolism of eupatilin in the rats has been studied by LC-electrospray mass spectrometry. Rat liver microsomal incubation of eupatilin in the presence of NADPH and UDPGA resulted in the formation of four metabolites (M1-M4). M1, M2, M3 and M4 were tentatively identified as 3'- or 4'-O-demethyl-eupatilin glucuronide, eupatilin glucuronide, 6-O-demethyleupatilin and 3'- or 4'-O-demethyl-eupatilin, respectively. Those metabolites from in vitro study were also characterized in bile, plasma or urine samples after an intravenous administration of eupatilin to rats. In rat bile, plasma and urine samples, eupatilin glucuronide (M2) was a major metabolite, whereas M3, M4 and M4 glucuronide (M1) were the minor metabolites.  相似文献   

6.
Salvianolic acid A (SalA) is one of the main active constituents in Salvia miltiorrhiza (Danshen). Although the pharmacokinetics of SalA in rats after intravenous (i.v.) administration of Danshen injection has been reported, the information relevant to the metabolites of SalA in vivo is absent so far. In this study, by means of liquid chromatography with time‐of‐flight mass spectrometry (LC/TOFMS) and liquid chromatography with ion trap mass spectrometry (LC/MSn) techniques, the unknown metabolites of SalA in rat plasma after i.v. administration of the purified SalA at the dose of 20 mg/kg body weight were identified. A liquid‐liquid extraction method was established to separate the metabolites from the plasma and the chromatographic separations were performed on a Xterra MS C18 column (100 mm × 4.6 mm i.d., 3.5 µm) with acetonitrile/methanol/water/formic acid (20.5:19.5:64: 0.05, v/v/v/v) as the mobile phase at a constant flow rate of 0.2 mL/min. Based on the data obtained from the LC/TOFMS determination (the total ion chromatograms, MS spectra and extracted ion chromatograms), in combination with the characteristic fragment ions acquired from the LC/MSn determination, five metabolites were identified as SalA‐monoglucuronide, monomethyl‐SalA‐monoglucuronide, mono‐methyl‐SalA, dimethyl‐SalA and dimethyl‐SalA‐monoglucuronide, and the possible chemical structures were deduced. The results indicated that SalA might mainly undergo two metabolic pathways in vivo in rats, which were methylation and glucuronidation. The present studies have laid a solid foundation for the metabolic mechanism of SalA in vivo. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
The metabolism of tanshinone IIA was studied in rats after a single-dose intravenous administration. In the present study, 12 metabolites of tanshinone IIA were identified in rat bile, urine and feces with two LC gradients using LC-MS/MS. Seven phase I metabolites and five phase II metabolites of tanshinone IIA were characterized and their molecular structures proposed on the basis of the characteristics of their precursor ions, product ions and chromatographic retention time. The seven phase I metabolites were formed, through two main metabolic routes, which were hydroxylation and dehydrogenation metabolism. M1, M4, M5 and M6 were supposedly tanshinone IIB, hydroxytanshinone IIA, przewaquinone A and dehydrotanshinone IIA, respectively, by comparing their HPLC retention times and mass spectral patterns with those of the standard compounds. The five phase II metabolites identified in this research were all glucuronide conjugates, all of which showed a neutral loss of 176 Da. M9 and M12 were more abundant than other identified metabolites in the bile, which was the main excretion path of tanshinone IIA and the metabolites. M12 was the main metabolite of tanshinone IIA. M9 and M12 were proposed to be the glucuronide conjugates of two different semiquinones and these semiquinones were the hydrogenation products of dehydrotanshinone IIA and tanshinone IIA, respectively. This hydrogenized reaction may be catalyzed by the NAD(P)H: quinone acceptor oxidoreductase (NQO). The biotransformation pathways of tanshinone IIA were proposed on the basis of this research.  相似文献   

8.
Acotiamide hydrochloride (ACT) is a drug used for the treatment of functional dyspepsia. Understanding which metabolites are likely to be formed in vivo is essential for interpreting pharmacology, pharmacokinetic and toxicology data. The metabolism of ACT has been investigated using a specific and sensitive liquid chromatography positive ion electrospray ionization high‐resolution tandem mass spectrometry method. In vivo samples including rat plasma, urine and feces were collected separately after dosing healthy Sprague–Dawley rats at a dose of 20 mg kg −1 ACT at different time points up to 24 h. The metabolites were enriched by optimized sample preparation involving protein precipitation using acetonitrile followed by solid‐phase extraction. The mass defect filter technique was used for better detection of both predicted and unexpected drug metabolites with the majority of interference ions removed. The structural elucidation of the metabolites was performed by comparing their [M + H]+ ions and their product ions with those of the parent drug. As a result, a total of seven hitherto unknown metabolites were characterized from the biosamples. The only phase I metabolite detected was N‐ despropyl acotiamide, whereas six phase II glucuronide conjugate metabolites were identified.  相似文献   

9.
An integrated strategy based on high‐resolution mass spectrometry coupled with multiple data mining techniques was developed to screen the metabolites in rat biological fluids after the oral administration of Xanthoceras sorbifolia Bunge husks. Mass defect filtering, product ion filtering, and neutral loss filtering were applied to detect metabolites from the complex matrix. As a result, 55 metabolites were tentatively identified, among which 45 barrigenol‐type triterpenoid metabolites were detected in the feces, and six flavonoids and four coumarins metabolites were in the urine. Moreover, eight prototype constituents in plasma, 36 in urine and 23 in feces were also discovered. Due to the poor bioavailability of barrigenol type triterpenoids, most of them were metabolized by intestinal flora. Phase I metabolic reactions such as deglycosylation, oxidation, demethylation, dehydrogenation, and internal hydrolysis were supposed to be their principal metabolic pathways. Coumarins were found in all the biosamples, whereas flavonoids were mainly in the urine. Unlike the saponins, they were mainly metabolized through phase II metabolic reactions like glucuronidation and sulfonation, which made them eliminated more easily by urine. This work suggested the metabolic profile of X. sorbifolia husks for the first time, which will be very valuable for its further development.  相似文献   

10.
Febuxostat is a novel nonpurine type of highly selective xanthine oxidoreductase inhibitor. A rapid and sensitive ultra‐high‐performance liquid chromatography–quadrupole time‐of‐flight mass spectrometry method for simultaneous separation and determination of febuxostat and its metabolites in rat serum and urine was developed at various time points after oral administration to the rats. The febuxostat metabolites were predicted by biotransformation software and transformed to a personal compound database to quickly determine the possible metabolites from the MS1 data. The possibility of the MS/MS fragmentation was calculated by the Molecular Structure Correlator software. As a result, five phase I and two phase II metabolites in rat serum, and seven phase I and three phase II metabolites in rat urine were identified, of which four metabolites (M2, M5, M6, M7) have not been reported before. The metabolite toxicities are predicted, and the results are helpful for the design of new xanthine oxidoreductase inhibitors.  相似文献   

11.
The metabolites of trimeprazine were identified in urine of rats by gas chromatography-mass spectrometry. After the oral administration of trimeprazine, the urinary metabolites were extracted with diethyl ether before or after hydrolysis with beta-glucuronidase. The identified metabolites were N-demethyltrimeprazine,3-hydroxytrimeprazine,N-demethyl-3-++ +hydroxytrimeprazine and trimeprazine sulphoxide.  相似文献   

12.
Toyo'oka T  Yano M  Kato M  Nakahara Y 《The Analyst》2001,126(8):1339-1345
The simultaneous determination of morphine and the glucuronide metabolites [morphine-3-beta-D-glucuronide (M3G) and morphine-6-beta-D-glucuronide (M6G)] in rat hair and rat plasma was carried out using reversed-phase high-performance liquid chromatography (HPLC) coupled with electrospray ionization mass spectrometry (ESI-MS). The chromatographic separation of the analytes was achieved using a semi-micro-HPLC column (3 microm particle size; 100 x 2.0 mm id) by gradient elution with 50 mM ammonium acetate and acetonitrile as eluents. After separation, morphine and the glucuronides were determined by selected ion monitoring (SIM) of ESI-MS using the quasi-molecular ions [M + H]+ at m/z = 286 and 462, respectively. The calibration curves were linear between the concentration of the analytes and the deuterium-labelled morphine (M-d3) selected as internal standard. The method was applied for the determination of the incorporation of morphine and the glucuronides into the hair shafts and hair roots of Dark Agouti rats after single intraperitoneal administration of morphine hydrochloride. Plasma concentrations of morphine and glucuronides were simultaneously determined after administration. Morphine and M3G were detected in the hair shafts and the hair roots. The concentrations of M3G in the hair root were lower than those of morphine in all sampling periods. In contrast, M3G concentrations in plasma were relatively higher at each sampling time. Small quantities of M6G were also identified in the plasma up to 4 h after administration. The concentration difference between the hair root and plasma seems to be due to the incorporation ratio of morphine and glucuronide into hair. As M3G was also identified in the hair shaft 1 week after administration, the incorporation of glucuronide metabolites into hair is obvious. This is the first report of the identification of morphine glucuronide in hair samples without the use of acid hydrolysis or enzyme digestion.  相似文献   

13.
A potent xanthine oxidoreductase inhibitor (LS087) was recently proved to exhibit a similar hypouricemic potency to febuxostat. A hyperuricemia model induced by potassium oxonate and hypoxanthine was proposed in specific pathogen-free male Kunming mice, and the serum urea nitrogen, creatinine and uric acid levels were measured after oral administration of LS087. Furthermore, renal histopathology was conducted by staining with hematoxylin and eosin, periodic acid–Schiff and Masson's trichrome stains, respectively. The results showed that the levels of serum urea nitrogen and uric acid significantly decreased compared with the model group, but the level of creatinine showed no significant changes. The pathological abnormalities in kidney tubules were improved after LS087 administration. Ten metabolites (M1–M10) of LS087 were identified after a single oral dosing of 10 mg/kg in rats. M6 was the primary LS087 metabolite in vivo with a pathway of methylation. The toxicity and potential risks of LS087 and its metabolites were predicted using the ProTox-II software. LS087 and the major metabolites (M2, M3, M5, M6, M7 and M8) were predicted to have no potential hepatotoxicity, but some metabolites with a total rate of <1% (M1, M4, M9, and M10) showed potential hepatotoxicity. M1 and M8 showed potential carcinogenicity. The LS087 biotransformation pathway in rat was well characterized.  相似文献   

14.
HM-30181, 4-oxo-4H-chromene-2-carboxylic acid, [2-(2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-2H-tetrazol-5-yl)-4,5-dimethoxyphenyl]amide, is a new P-glycoprotein inhibitor. This study was performed to identify the in vitro and in vivo metabolic pathway of HM-30181 in rats. Rat liver microsomal incubation of HM-30181 in the presence of NADPH resulted in the formation of four metabolites, M1-M4. M1 and M2 were identified as 2-(2-{4-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-ethyl]-phenyl}-2H-tetrazol-5-yl)-4,5-dimethoxyaniline and 4- or 5-O-desmethyl-HM-30181, respectively, on the basis of liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis with the synthesized authentic standards. M3 and M4 were suggested to be 6- or 7-O-desmethyl-HM-30181 and hydroxy-HM-30181, respectively. These in vitro metabolites were also detected in feces and urine samples after an intravenous administration of HM-30181 to male rats. The metabolic routes for HM-30181 were O-demethylation of the methoxy group to M2 and M3, hydrolysis of the amide group to M1, and hydroxylation to M4.  相似文献   

15.
Physalin D is known to show extensive bioactivities. However, no excretion study has elucidated the excretion of physalin D and its metabolites. This study investigates the excretion of physalin D and its metabolites in rats. Metabolites in rat urine and feces were separated and identified by liquid chromatography with triple quadrupole time‐of‐flight mass spectrometry. Furthermore, a validated high‐performance liquid chromatography with tandem mass spectrometry method was developed to quantify physalin D, physalin D glucuronide, and physalin D sulfate in rat feces and urine after the intragastric administration of physalin D. The analyte showed good linearity over a wide concentration range (r  > 0.995), and the lower limit of quantification was 0.0532 μg/mL and 0.226 μg/g for urine and feces, respectively. Nine metabolites, including five phase I and four phase II metabolites, were identified and clarified after dosing in vivo. Only 4.0% of the gavaged dose, including physalin D and its phase II metabolites, was excreted in urine, whereas 10.8% was found in feces in the unchanged form. The results indicate that the extensive and rapid metabolism may be the main factors leading to the short half‐life of physalin D. These results can provide a basis for further studies on the structural modification and pharmacology of physalin D.  相似文献   

16.
The present article covers a simple approach to detect and subsequently identify in vivo metabolites of brodimoprim, using high performance liquid chromatography coupled to ion trap mass spectrometer(LC/ESI-MS), which is based on a data-dependent acquisition of isotope ions and result verified by full scan mass spectrum. The distinguished advantage of data-dependent scan is rapidness because it requires minimum sample preparation, and all the necessary data can be obtained in one chromatographic run. In addition, it is highly sensitive and selective, allowing detection of trace metabolites even in the presence of complex biomatrix. As a result, four phase-Ⅰ(M1--M4) and four Phase-Ⅱ(M5--M8) metabolites of brodimoprim were identified in urine after the oral administration of hrodimoprim to Wistar rats. Their chemical structures were proposed based on the interpretation of their CID fragmentation characterizations and the metabolic pathway was exhibited in this article.  相似文献   

17.
The Zhimu–Huangqi herb-pair is a famous Chinese herbal formula with a combination of Rhizoma Anemarrhenae (Zhimu in Chinese) and Radix Astragali (Huangqi in Chinese). This work describes a sensitive and specific LC–ES-MSn methodology for identification of the major constituents in Zhimu–Huangqi herb-pair extract and their metabolites in rats after oral administration. A total of 30 compounds have been identified or tentatively characterized from the herb-pair extract, and 13 of them were unambiguously identified by comparing the retention times and mass spectra with those of reference standards, while the other 17 compounds were tentatively identified on the basis of their MSn fragmentation behaviors and exact mass information from literature. Moreover, the metabolites in vivo were also identified. The Zhimu–Huangqi herb-pair extract was actively metabolized in rats, including four parent compounds and 8 metabolites in serum and seven parent compounds and 23 metabolites in urine. This study proposed a good example for the rapid identification of major constituents in complex systems such as herbal extract or traditional Chinese medicine formula, which facilitated the clarification of the metabolic pathway of the herbs in the body to better understand the action mechanism.  相似文献   

18.
The progression of diabetic complications can be prevented by inhibition of aldose reductase and fidarestat considered to be highly potent. To date, metabolites of the fidarestat, toxicity, and efficacy are unknown. Therefore, the present study on characterization of hitherto unknown in vitro and in vivo metabolites of fidarestat using liquid chromatography–electrospray ionization tandem mass spectrometry (LC/ESI/MS/MS) is undertaken. In vitro and in vivo metabolites of fidarestat have been identified and characterized by using LC/ESI/MS/MS and accurate mass measurements. To identify in vivo metabolites, plasma, urine, and feces samples were collected after oral administration of fidarestat to Sprague–Dawley rats, whereas for in vitro metabolites, fidarestat was incubated in human S9 fraction, human liver microsomes, and rat liver microsomes. Furthermore, in silico toxicity and efficacy of the identified metabolites were evaluated. Eighteen metabolites have been identified. The main in vitro phase I metabolites of fidarestat are oxidative deamination, oxidative deamination and hydroxylation, reductive defluroniation, and trihydroxylation. Phase II metabolites are methylation, acetylation, glycosylation, cysteamination, and glucuronidation. Docking studies suggest that oxidative deaminated metabolite has better docking energy and conformation that keeps consensus with fidarestat whereas the rest of the metabolites do not give satisfactory results. Aldose reductase activity has been determined for oxidative deaminated metabolite (F‐1), and it shows an IC50 value of 0.44 μM. The major metabolite, oxidative deaminated, did not show any cytotoxicity in H9C2, HEK, HEPG2, and Panc1 cell lines. However, in silico toxicity, the predication result showed toxicity in skin irritation and ocular irritancy SEV/MOD versus MLD/NON (v5.1) model for fidarestat and its all metabolites. In drug discovery and development research, it is distinctly the case that the potential for pharmacologically active metabolites must be considered. Thus, the active metabolites of fidarestat may have an advantage as drug candidates as many drugs were initially observed as metabolites.  相似文献   

19.
Li  Zhixiong  Song  Xinmeng  Fu  Zhiwen  Wu  Bin  Ling  Yun  Sun  Zhaolin  Chen  Mingcang  Xu  Desheng  Huang  Chenggang 《Chromatographia》2013,76(13):767-780

The Zhimu–Huangqi herb-pair is a famous Chinese herbal formula with a combination of Rhizoma Anemarrhenae (Zhimu in Chinese) and Radix Astragali (Huangqi in Chinese). This work describes a sensitive and specific LC–ES-MSn methodology for identification of the major constituents in Zhimu–Huangqi herb-pair extract and their metabolites in rats after oral administration. A total of 30 compounds have been identified or tentatively characterized from the herb-pair extract, and 13 of them were unambiguously identified by comparing the retention times and mass spectra with those of reference standards, while the other 17 compounds were tentatively identified on the basis of their MSn fragmentation behaviors and exact mass information from literature. Moreover, the metabolites in vivo were also identified. The Zhimu–Huangqi herb-pair extract was actively metabolized in rats, including four parent compounds and 8 metabolites in serum and seven parent compounds and 23 metabolites in urine. This study proposed a good example for the rapid identification of major constituents in complex systems such as herbal extract or traditional Chinese medicine formula, which facilitated the clarification of the metabolic pathway of the herbs in the body to better understand the action mechanism.

  相似文献   

20.
Isopropyl 3‐(3,4‐dihydroxyphenyl)‐2‐hydroxypropanoate (IDHP) is an investigational new drug having the capacity for treating ailments in the cardiovascular and cerebrovascular system. In this work, a rapid and sensitive method using high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry (HPLC‐ESI‐Q‐TOF‐MS) was developed to reveal the metabolic profile of IDHP in rats after oral administration. The method involved pretreatment of the samples by formic acid–methanol solution (v/v, 5:95), chromatographic separation by an Agilent Eclipse XDB‐C18 column (150 × 4.6 mm i.dx., 5 μm) and online identification of the metabolites by Q‐TOF‐MS equipped with electrospray ionizer. A total of 16 metabolites from IDHP, including four phase I metabolites and 12 phase II metabolites, were detected and tentatively identified from rat plasma, urine and feces. Among these metabolites, Danshensu (DSS), a hydrolysis product of IDHP, could be further transformed to 11 metabolites. These results indicated that DSS was the main metabolite of IDHP in rats and the major metabolic pathways of IDHP in vivo were hydrolysis, O‐methylation, sulfation, glucuronidation and reduction. The results also demonstrated that renal route was the main pathway of IDHP clearance in rat. The present study provided valuable information for better understanding the efficacy and safety of IDHP. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号