首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phase behaviors of four phytosterol ethoxylates surfactants (BPS-n, n = 5, 10, 20, and 30) with different oxyethylene units in room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4), have been studied. The polarized optical microscopy and small-angle X-ray scattering techniques are used to characterize the phase structures of these binary systems at 25 °C. The structure and ordering of the liquid crystalline (LC) phases in such BPS-n/[Bmim]BF4 systems are found to be influenced by BPS-n concentration and the temperature. Due to the bulky and rigid cholesterol group, the phytosterol ethoxylates surfactants exhibit different properties and interaction mechanism from the conventional CnEOm type nonionic surfactant systems. The rheological measurements indicate a highly viscoelastic nature of these lyotropic LC phases and disclose a lamellar phase characteristic with a rather strong rigidity at high surfactant concentrations. The control experiment with Brij 97(polyoxyethylene (10) oleyl ether)/[Bmim]BF4 system and the FTIR measurements help to recognize that the solvophobic interaction combining with the hydrogen bonding are the main driving forces for the LC phases formation.  相似文献   

2.
We investigate the structure of the [bmim][Tf(2)N]/silica interface by simulating the indentation of a thin (4 nm) [bmim][Tf(2)N] film by a hard nanometric tip. The ionic liquid/silica interface is represented in atomistic detail, while the tip is modelled by a spherical mesoscopic particle interacting via an effective short-range potential. Plots of the normal force (F(z)) on the tip as a function of its distance from the silica surface highlight the effect of weak layering in the ionic liquid structure, as well as the progressive loss of fluidity in approaching the silica surface. The simulation results for F(z) are in near-quantitative agreement with new AFM data measured on the same [bmim][Tf(2)N]/silica interface under comparable thermodynamic conditions.  相似文献   

3.
Investigation on alkali fluoride-HF system has been initiated in the 19th century. The technique is currently utilized in fluorine-chemical industry. But, the problem is that this system readily releases hazardous HF. Although organic base, e.g., amine, with HF, which is mainly applied to fluorination treatment for organic compound, reduces the HF release, the solution still requires careful handling because of limited amount of free HF. Recently family of fluorohydrogenate room-temperature ionic liquid, XF(HF)2.3, that consists of heterocyclic ammonium cation (X+), F(HF)2, and F(HF)3, has gotten a lot of attentions due to the interesting physicochemical properties such as negligible vapor pressure (<7.5 × 10−3 Torr (=1 Pa) at 298 K), high conductivity, and low corrosiveness. This novel solvent will greatly contribute to development of fluorine chemistry. In this article, fundamental techniques and physicochemical data on the fluorohydrogenate RTIL are summarized, and molecular science in the dialkylimidazolium fluorohydrogenates leading to the understanding of the unusual properties is reviewed based on recent experimental and theoretical considerations.  相似文献   

4.
The electrochemistry of the [PtCl(6)](2-)-[PtCl(4)](2-)-Pt redox system on a glassy carbon (GC) electrode in a room-temperature ionic liquid (RTIL) [i.e., N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEMEBF(4))] has been examined. The two-step four-electron reduction of [PtCl(6)](2-) to Pt, i.e., reduction of [PtCl(6)](2-) to [PtCl(4)](2-) and further reduction of [PtCl(4)](2-) to Pt, occurs separately in this RTIL in contrast to the one-step four-electron reduction of [PtCl(6)](2-) to Pt in aqueous media. The cathodic and anodic peaks corresponding to the [PtCl(6)](2-)/[PtCl(4)](2-) redox couple were observed at ca. -1.1 and 0.6 V vs a Pt wire quasi-reference electrode, respectively, while those observed at -2.8 and -0.5 V were found to correspond to the [PtCl(4)](2-)/Pt redox couple. The disproportionation reaction of the two-electron reduction product of [PtCl(6)](2-) (i.e., [PtCl(4)](2-)) to [PtCl(6)](2-) and Pt metal was also found to occur significantly. The electrodeposition of Pt nanoparticles could be carried out on a GC electrode in DEMEBF(4) containing [PtCl(6)](2-) by holding the potential at -3.5 or -2.0 V. At -3.5 V, the four-electron reduction of [PtCl(6)](2-) to Pt can take place, while at -2.0 V the two-electron reduction of [PtCl(6)](2-) to [PtCl(4)](2-) occurs. The results obtained demonstrate that the electrodeposition of Pt at -3.5 V may occur via a series of reductions of [PtCl(6)](2-) to [PtCl(4)](2-) and further [PtCl(4)](2-) to Pt and at -2.0 V via a disproportionation reaction of [PtCl(4)](2-) to [PtCl(6)](2-) and Pt. Furthermore, the deposition potential of Pt nanoparticles was found to largely influence their size and morphology as well as the relative ratio of Pt(110) and Pt(100) crystalline orientation domains. The sizes of the Pt nanoparticles prepared by holding the electrode potential at -2.0 and -3.5 V are almost the same, in the range of ca. 1-2 nm. These small nanoparticles are "grown" to form bigger particles with different morphologies: In the case of the deposition at -2.0 V, the GC electrode surface is totally, relatively compactly covered with Pt particles of relatively uniform size of ca. 10-50 nm. On the other hand, in the case of the electrodeposition at -3.5 V, small particles of ca. 50-100 nm and the grown-up particles of ca. 100-200 nm cover the GC surface irregularly and coarsely. Interestingly, the Pt nanoparticles prepared by holding the potential at -2.0 and -3.5 V are relatively enriched in Pt(100) and Pt(110) facets, respectively.  相似文献   

5.
Highly reversible, safe lithium secondary batteries that use imidazolium-cation-based room-temperature ionic liquid as an electrolyte and lithium metal as an anode material were realized by the molecular design. To achieve higher reduction stability, an electron-donating substituent was introduced to promote charge delocalization in the imidazolium cation of room-temperature ionic liquids.  相似文献   

6.
Anisotropic thermally reversible ionogels of sodium laurate (SL) were prepared in the first discovered room-temperature ionic liquid (RTIL), ethylammonium nitrate (EAN). Polarized optical microscope images indicate that the gels are birefringent, illuminating the presence of anisotropic structures. Small-angle X-ray scattering results reveal that SL and lauric acid (LA) molecules are arranged to form lamellar structures, but no SL crystallites were confirmed by the X-ray diffraction measurements. With an increase of the SL concentration, the interlayer distance decreases. Rheological measurements indicate that the anisotropic ionogels are highly viscoelastic and the storage modulus (G') increases with an increase of the SL concentration in EAN. Electrochemical measurements indicate that the anisotropic ionogels may have potential applications in electrochemical fields. The intermolecular hydrogen bond as well as the solvatophobic interaction of SL and LA formed by a chemical reaction, CH(3)(CH(2))(10)COONa + CH(3)CH(2)NH(3)NO(3) --> CH(3)CH(2)NH(2) upward arrow + NaNO(3) downward arrow + CH(3)(CH(2))(10)COOH, can play a role in the formation of three-dimensional networks having lamellar structures which are responsible for the anisotropic ionogels. The formation of anisotropic ionogels by surfactants in RTILs could be a new phenomenon, but this is not a very classic case of organogels.  相似文献   

7.
8.
9.
A remarkable capacitance of 180 F·g 1 (at 5 mV·s 1) in solvent-free room-temperature ionic liquid electrolyte, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, was achieved in symmetric supercapacitors using microporous carbons with a specific surface area of ca. 2000 m2·g 1 calculated from gas sorption by the 2D-NLDFT method. The efficient capacitive charge storage was ascribed to textural properties: unlike most activated carbons, high specific surface area was made accessible to the bulky ions of the ionic liquid electrolyte thanks to micropores (1–2 nm) enabled by fine-tuning chemical activation. From the industrial perspective, a high volumetric capacitance of ca. 80 F·cm 3 was reached in neat ionic liquid due to the absence of mesopores. The use of microporous carbons from biomass waste represents an important advantage for large-scale production of high energy density supercapacitors.  相似文献   

10.
An unusual ionic conduction phenomenon related to the phase transition of a novel phosphonium-cation-based room-temperature ionic liquid (RTIL) is reported; we found that in the phase change upon cooling, a clear increase in ionic conductivity was seen as the temperature was lowered, which differs from widely known conventional RTILs; clearly, our finding of abnormality of the correlation between temperature change and ionic conduction is the first observation in the electrolyte field.  相似文献   

11.
A novel acidic ionic liquid immobilized on silica has been synthesized by hydrolyzing tetraethyl orthosilicate (TEOS) and the acidic ionic liquid derived from (3-aminopropyl) trimethoxysilane. The catalytic activities were evaluated in the acetalization and biodiesel synthesis. The results showed that the solid acid was a very efficient catalyst for the traditional acid-catalyzed reactions with the yield over 99.0%. A novel solid acid combined both the high activities inherent to the acidic ionic liquid and the feasibility of separation of the solid catalysts. High acidity, enhanced catalytic activities and improved stability were the key properties of the novel solid acid.  相似文献   

12.
The separation of selected 1-alkyl- and 1-aryl-3-methylimidazolium-based room temperature ionic liquid cations has been performed using reversed-phase high-performance liquid chromatography with electrospray ionization mass detection. The RP-HPLC method development started with the selection of a column taking into account especially the resolution of low molecular congeners of the selected group. Mobile phase composition was optimized for peak resolution, sensitivity and high reproducibility of retention values. The results of the method development were applied to the determination of exemplary ionic liquid species present in the medium used in cytotoxicity studies.  相似文献   

13.
Ogura T  Takao K  Sasaki K  Arai T  Ikeda Y 《Inorganic chemistry》2011,50(21):10525-10527
Reduction of U(VI)O(2)Cl(4)(2-) in a mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and its chloride at E°' = -0.996 V vs Fc/Fc(+) and 298 K affords U(V)O(2)Cl(4)(3-), which is kinetically stable and exhibits typical character of U(V) in the UV-vis-NIR absorption spectrum.  相似文献   

14.
In this work the effect of ionic strength on the adsorption behavior of cationic polyelectrolyte (acrylamide-acrylamidopropyltrimethylammonium chloride) and negatively charged silica particles has been studied by means of ellipsometry. The adsorption of the polyelectrolyte was observed to increase with increasing salt concentration, a behavior typical for polyelectrolytes with a screening-reduced solvency and a nonelectrostatic affinity for the surface. A similar dependence on the ionic strength was observed when studying the electrolyte effect on the nanoparticle adsorption to the preadsorbed polyelectrolyte film, suggesting that the polyelectrolyte surface conformations largely govern the binding capacity of the particles to the surface.  相似文献   

15.
Vibrational energy relaxation (VER) dynamics of a diatomic solute in ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate (EMI(+)PF(6) (-)) are studied via equilibrium and nonequilibrium molecular dynamics simulations. The time scale for VER is found to decrease markedly with the increasing solute dipole moment, consonant with many previous studies in polar solvents. A detailed analysis of nonequilibrium results shows that for a dipolar solute, dissipation of an excess solute vibrational energy occurs almost exclusively via the Lennard-Jones interactions between the solute and solvent, while an oscillatory energy exchange between the two is mainly controlled by their electrostatic interactions. Regardless of the anharmonicity of the solute vibrational potential, VER becomes accelerated as the initial vibrational energy increases. This is attributed primarily to the enhancement in variations of the solvent force on the solute bond, induced by large-amplitude solute vibrations. One interesting finding is that if a time variable scaled with the initial excitation energy is employed, dissipation dynamics of the excess vibrational energy of the dipolar solute tend to show a universal behavior irrespective of its initial vibrational state. Comparison with water and acetonitrile shows that overall characteristics of VER in EMI(+)PF(6) (-) are similar to those in acetonitrile, while relaxation in water is much faster than the two. It is also found that the Landau-Teller theory predictions for VER time scale obtained via equilibrium simulations of the solvent force autocorrelation function are in reasonable agreement with the nonequilibrium results.  相似文献   

16.
The cyclic voltammetry responses and the redox switching dynamics of poly(3,4-ethylenedioxythiophene) (PEDOT) in a room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)amide (EMImTf2N), were investigated. The shape of the cyclic voltammograms showed two anodic and two cathodic peaks. These peak currents varied linearly with the scan rate indicating a thin-layer behaviour. No memory effects were observed during the cyclic voltammetry experiments in this ionic liquid. On the other hand, the redox switching dynamics of PEDOT were studied by means of potential step experiments. The analysis of chronocoulograms in term of RC-circuits indicated that the time dependence of the charge transferred during the potential step showed two time constants. These results were consistent with the postulated structure or morphology of the PEDOT film which contained two types of coexisting zones: a compact and an open structures.  相似文献   

17.
The stability of a variety of lyotropic liquid crystals formed by a number of polyoxyethylene nonionic surfactants in the room-temperature ionic liquid ethylammonium nitrate (EAN) is surveyed and reported. The pattern of self-assembly behaviour and mesophase formation is strikingly similar to that observed in water, even including the existence of a lower consolute boundary or cloud point. The only quantitative difference from water is that longer alkyl chains are necessary to drive the formation of liquid crystalline mesophases in EAN, suggesting that a rich pattern of "solvophobic" self-assembly should exist in this solvent.  相似文献   

18.
We have studied the self-diffusion properties of butyl-methyl-imidazolium bis(trifluoromethylsulfonyl)-imide ([BMIM][TFSI]) + water system. The self-diffusion coefficients of cations, anions, and water molecules were determined by pulsed field gradient NMR. These measures were performed with increased water quantity up to saturation (from 0.3 to 30 mol %). Unexpected variations have been observed. The self-diffusion coefficient of every species increases with the quantity of water but not in the same order of magnitude. Whereas very similar evolutions are observed for the anion and cation, the increase is 25 times greater for water molecules. We interpret our data by the existence of phase separation at microscopic scale.  相似文献   

19.
The crystallization of calcium carbonate (CaCO3) controlled by Pluronic P123 in a room-temperature ionic liquid, ethylamine nitrate (EAN), was investigated. The CaCO3 aggregates were obtained by rapid mixing of ammonium carbonate ((NH4)2CO3) and calcium chloride (CaCl2). Cubic calcite, spherical vaterite, and bagel-like vaterite were obtained easily by changing P123 concentration and reaction temperature. The morphologies of the as-prepared CaCO3 aggregates were investigated by transmission electron microscopy and scanning electronic microscopy. The phase change of the obtained crystals was confirmed by X-ray diffraction and Fourier transform infrared spectroscopy. It was shown that higher P123 concentration and higher reaction temperature favor the formation of vaterite in EAN. Unusual bagel-like vaterite was first obtained at 60 °C in the presence of 5 g/L P123 in EAN. Mineralization of CaCO3 regulated by P123 in EAN is a simple, novel, and environment-friendly strategy for vaterite synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号